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Useful Geometric Structure

• Robots operate in physical spaces


• They have geometric structure that sometimes are neglected


• Resulting less efficiency, generalizability, or even failure

Mathematical Space Physical System Learning / Planning

2D Grid Sphere

{ } { }

Object Interaction
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Task and Challenges
Target: Long-horizon Mobile 
Manipulation — Requires 
combined learning and planning 

Challenges: 

• Efficiency, Generalization, 
Scalability in Learning 

• Learning Desirable 
Representation for Planning
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Geometric Structures Could Help

• Use e.g,. symmetry and 
compositionality of the tasks


• May reduce number of free 
parameters and solution space


• Result in better efficiency, 
generalization, scalability, …

2D Discrete Map Rotation/

2D Discrete Symmetry D4

{ } { }
Object Interchangeability

Permutation Symmetry SN
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Negative Examples

Ignoring rotation symmetry in planning 
results in inconsistency

Predicted
Object slots ̂z2

Loss
(All slots)

Encoded
Object slots z2

Ignoring object interchangeability in world 
modeling results in misalignment
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Symmetry and Equivariance

• Object segmentation task has symmetry: moving/rotating objects 


• 2D Convolution Networks are translation equivariant by design
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[Credit: UvA Group Equivariant NNs lecture; https://github.com/QUVA-Lab/escnn; Geometric Deep Learning, Bronstein et al. 2021]



Additional Symmetry: Rotation
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[Credit: https://github.com/QUVA-Lab/escnn; Geometric Deep Learning, Bronstein et al. 2021]

Normal CNN

Rotation-equivariant 
CNN



Brief History of Equivariant NNs

[Credit: UvA Group Equivariant NNs lecture] This only covers Lie groups, but not e.g,. GNN and permutation groups.
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This talk

Identifying Geometric Structure in Tasks

Encoding Geometric Structure into Algorithms

Motivating what component needs geometric structure: Learning + Planning
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Topics

• Learning for End-to-end Planning 
— How to learn to plan and improve stability


• Symmetric (and Compositional) Structure in Robot Planning 
— How does symmetry improve (path) planning and world modeling


• Symmetric Structure in Robot Learning  
— How could symmetry improve learning robot skills

Grey items are  
secondary
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What is planning?
• A (learned) state space 


• A (learned) transition model 
 that gives next state


• Goal of planning


• 1, Maximize reward/utility function, 
or minimize cost


• 2, Reach goal region

𝒮

f(s, a) = s′￼

[Credit: MuZero, DeepMind]
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Challenges in Learning + Planning
In complex tasks


• E.g., mobile manipulation, visual navigation


• Require e.g., long-horizon goal reaching


It is hard to simultaneously


• Define compact state space


• Obtain accurate predictive model


• Reliably reach far goals or sparse rewards
[Credit: Robohub Visual Nav]
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The Need of “Learning to Plan”
One core challenge: How to learn 
good representation for planning


• Balance what is contained in states


Prior work: VIN [Tamar et al. NIPS 
2016], MuZero [Schrittwieser et al. 
Nature 2020], Value Equivalence 
Principle [Grimm et al. NeurIPS 2020]


One Idea: Learning from data using 
end-to-end architecture [Credit: MuZero, DeepMind]
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Improving “Differentiable Planning”
Scaling up and Stabilizing 
Differentiable Planning with Implicit 
Differentiation


ICLR 2023


Linfeng Zhao, Huazhe Xu, Lawson Wong

Input Inject

Input Inject

Backward Pass: Explicit Gradient Backward Pass: Implicit GradientForward Pass
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Path Planning
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Find shortest path / optimal actions to the goal location (red)



Tasks
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Workspace
To C-space

End-to-end
Learned 

(or by iterative 
algorithm)

Visualized
Panoramic

View

(4 Directions)

2-DOF Manipulation
In Workspace and C-space

2D and Visual  
Maze Navigation



Background: Value Iteration Networks
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Input Inject

Input Inject

Backward Pass: Explicit Gradient Backward Pass: Implicit GradientForward Pass

• Value Iteration Networks implement Value Iteration by CNNs

• It iteratively applies Bellman operator and differentiates through multiple layers

Tamar et al.  Value Iteration Networks.  NIPS 2016.



Algorithmic Differentiation in VIN
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Key issue: 
Forward and Backward passes are coupled together

When the planning horizon is long, backpropagation is not scalable, stable, or efficient

Input Inject

Input Inject

Backward Pass: Explicit Gradient Backward Pass: Implicit GradientForward Pass



Implicit Differentiation => remove math

• Bellman equation:

• Differentiating both sides: 

• Solving backward fixed-point:
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Bai et al. Deep Equilibrium Models. 2019.
Nikishin et al. Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation. 2021.
Gehring et al. Understanding End-to-End Model-Based Reinforcement Learning Methods as Implicit Parameterization. 2021.



Method: Implicit Differentiable Planners
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Input Inject

Input Inject

Backward Pass: Explicit Gradient Backward Pass: Implicit GradientForward Pass

Algorithmic 
Differentiable 

Planner: 
(ADP) 

VIN

Implicit 
Differentiable 

Planner: 
(IDP) 
ID-VIN



Results: Runtime on 2D Nav
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Algorithmic Differentiable Planners Implicit Differentiable Planners



Results: Success Rate
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Topics

• Learning for End-to-end Planning 
— How to learn to plan and improve stability


• Symmetric (and Compositional) Structure in Robot Planning 
— How does symmetry improve (path) planning and world modeling


• Symmetric Structure in Robot Learning  
— How could symmetry improve learning robot skills

Grey items are  
secondary
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Integrating Symmetry Into 
Differentiable Planning With 
Steerable Convolutions


ICLR 2023


Linfeng Zhao, Xupeng Zhu, Lingzhi Kong, 
Robin Walters, Lawson Wong

Symmetry in Path Planning

2D Discrete Map Rotation/Reflection

2D Discrete Symmetry D4
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Symmetry in Path Planning
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What does the 
symmetry look 

like?



Symmetry in Path Planning
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What does the 
symmetry look 

like?

Equivariance

They can be described by

↺ 90∘ ∘ (Plan(M)) = Plan( ↺ 90∘ ∘ M)



Symmetry: All Rotations and Reflections
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Symmetry: Rotations
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r r r



Symmetry: Rotations and Reflections
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r r r



Symmetry: All 8 Transformations in D4
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r r r
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Value Iteration with Symmetry
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↺ 90∘ ∘ VI(M) ≡ ↺ 90∘ ∘ 𝒯∞[V0] = 𝒯∞[ ↺ 90∘ ∘ V0] ≡ VI( ↺ 90∘ ∘ M)

Every update is equivariant 
— Local Equivariance

Entire planning is equivariant
— Global Equivariance

Q̄(k) = R̄a + Conv2D(V̄(k−1); WV
ā ) Q̄(k)

ā = R̄ā + SteerableConv(V̄; WV)

• Use steerable convolution, equivariant to rotation and reflection:

Replace



Main Pipeline: Symmetric Value Iteration Network
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We use steerable convolutions to integrate symmetry in VINs.

Every pair is equivariant



Key Insights
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1: Represent (value) functions as “fields”

Bronstein et al. (2021): Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges.  arXiv.

2: Value iteration as convolution (network)

Value Update



Theoretical results
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Theorem 2 (informal): Value iteration for path planning* is a form of 
steerable convolution network**

Cohen et al. (2017): Steerable CNNs, ICLR 2017

*: Path planning on 2D grid, an example of homogeneous spaces 
**: Steerable CNN over grids, equivariant under induced representations

Theorem 1 (informal): Value iteration for path planning* is 
equivariant to translation, rotation, and reflection



Experiment: Setup
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Workspace
To C-space

End-to-end
Learned 

(or by iterative 
algorithm)

Visualized
Panoramic

View

(4 Directions)

2-DOF Manipulation
In Workspace and C-space

2D and Visual  
Maze Navigation



Results: Training
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2D Maze Navigation 2-DOF Manipulation

• Training curves on 15x15 maps; Use 3x3 filters, fixed 30 iterations (shared layers)

• More efficient training; Higher asymptotic performance; Better generalization



Results: Evaluation on test maps

• Better generalization on novel maps

• Test novel maps are not necessarily rotated version of training maps
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Visualization: VIN
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Feed in  andM ↺ 90∘ ∘ M

VIN output doesn’t satisfy equivariance



Visualization: SymVIN
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SymVIN guarantees output is equivariant

Feed in  andM ↺ 90∘ ∘ M



Summary

• Introduce a framework for incorporating symmetry into path-planning problems

• Prove that value iteration for path planning can be treated as a steerable CNN

• Show that Symmetric Planners improve in training efficiency and generalization
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Extension: Navigation on Graph
E(2)-Equivariant Graph Planning for 
Navigation


Submission to RA-L (2023)


Linfeng Zhao*, Hongyu Li*, Taskin Padir, 
Huaizu Jiang^, Lawson L.S. Wong^
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Setup: Path Planning on Graph

• Path planning on graph: finding shortest path on graphs given goal
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Challenge 1: Grid to Graph

• SymVIN only allows planning on 2D grid and 2D discrete symmetry


• We extend to graphs: performing value iteration via message passing 
GNN and supporting E(2) continuous symmetry
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Challenge 2: Camera/View Layout
Robots may only have K views


• Naive equivariance only allow 
 ( ) rotation symmetry


• We lift it to  to potentially 
allow continuous symmetry in 
downstream planning network


Commutative diagram of the  
lift layer:

CK 360∘/K

SO(2)
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Pipeline: E(2) Message Passing VIN
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Toward Compositional 
Generalization in Object-Oriented 
World Modeling


ICML 2022 Long Oral Presentation


Linfeng Zhao, Lingzhi Kong, Robin Walters, 
Lawson Wong

Compositional Structures

{ } { }
Object Interchangeability

Permutation Symmetry SN

Motivation
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Proposed Setup: Object Library

Object Library 

“Vocabulary” 

All possible objects

𝕃
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{ } { }Scenes 

(Ordered) “Sentences” 

A combination of objects

𝕆i ⊂ 𝕃

Scene MDPs 

Generated by  

Moving objects on a table

ℳ𝕆i

𝕆

Motivation: sampling words from vocabulary to form sentences

N ≜ |𝕃 | = 4

K ≜ |𝕆 | = 2



Proposed Setup: Object Library
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{ }
{ }
{ }

{ }
{ }
{ }

All  combinations(N
K) = (4

2) = 6



Binding Visualization
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Object 7

Found object identity  
through actions

(unknown identity)

K=5 slots
5+1 rows
(+ 1 background)

N=10 objects
10 columns

Encoded
Object slots z1

Actions 
a1

F B L R

F B L R

F B L R

F B L R

Recall: 
Binding Actions to Slots



Takeaways

• +: Symmetry and object compositionality are useful


• -: Still assume we know them a priori 

• -: Still need complicated architecture to use them and 
need more memory+time to train


• Future: More efficient architectures; Applications on 
more diverse problems, Less additional efforts on 
identifying/using geometric structure

{ } { }
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Topics

• Learning for End-to-end Planning 
— How to learn to plan and improve stability


• Symmetric (and Compositional) Structure in Robot Planning 
— How does symmetry improve (path) planning and world modeling


• Symmetric Structure in Robot Learning 
— How could symmetry improve learning robot skills

Grey items are  
secondary
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Motivation

• In learning robotic skills, such as 
grasping, need data efficiency 
and generalizability


• Need to be aware of geometric 
structures like symmetry
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Symmetry in Language-Conditioned Grasping

Language-Conditioned Equivariant 
Grasp


In Submission, 2023


Haojie Huang, Mingxi Jia, Zhewen Zhang, 
Ondrej Biza, Linfeng Zhao, Robin Walters, 
Robert Platt
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Demo: Training Objects/Parts
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Demo: Unseen Objects
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Takeaways

• How to ground language while preserving geometric structure is a 
challenge for the literature


• The “steerable kernel” → sample efficiency + accuracy for rotation


• Object-Part grasp benchmark: Shows language conditioning enables 
some degree of object-part compositionality

58



Other Related Papers
• Learning Symmetric Embeddings for Equivariant World Models. ICML 2022. 

Jung Yeon Park*, Ondrej Biza*, Linfeng Zhao, Jan Willem van de Meent, 
Robin Walters.


• Equivariant Single View Pose Prediction Via Induced and Restriction 
Representations. NeurIPS 2023. 
Owen Howell, David Klee, Ondrej Biza, Linfeng Zhao, Robin Walters


• Can Euclidean Symmetry Help in Reinforcement Learning and Planning?. 
arXiv 2023. 
Linfeng Zhao, Owen Howell, Jung Yeon Park, Xupeng Zhu, Robin 
Walters, Lawson L.S. Wong
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Takeaways
• Learning representation for planning from data is a challenge.


• Geometric structures may enhance learning and planning on robotic tasks 
like navigation and manipulation.


• For example, considering symmetry and compositionality improves 
efficiency, generalization, scalability etc.


• Deciding which structures to inject as inductive biases is hidden behind the 
scene and hugely impacts the performance.


• Other challenges still remain in the path towards generally intelligent robots.

60



Future directions

• Structured representation for planning


• how to utilize equivariance in continuous environment and their algorithms


• how to make 3D equivariance from 2D multi-view


• how to make pretrained foundation models equivariant


• Paradigms for learning representations for planning


• how to exploit and improve planning in foundation models

Happy to further chat and collaborate!
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