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Hey Spot, put 
away the tools!
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Why Planning?

• Difficulties in Perceiving and Representing a Complex World 

• Acting in Complex Environments 

• Generalization to Unseen Cases and Tasks 

• Inference-Time Adaptivity
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“They are one of a few groups that actually 
know planning and abstraction!”



Why Planning?

• Difficulties in Perceiving and Representing a Complex World 

• Enabling operating with less perfect representation by considering more outcomes 

• Allowing making decisions to reduce uncertainty, partially observability and other 
imperfections in state 

• Acting in Complex Environments 

• Generalization to Unseen Cases and Tasks 

• Inference-Time Adaptivity
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Why Planning?

• Difficulties in Perceiving and Representing a Complex World 

• Acting in Complex Environments 

• Strategic decisions for long-horizon and large action space 

• Handle various forms of goals and subgoals and strategic exploration 

• Generalization to Unseen Cases and Tasks 

• Inference-Time Adaptivity
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Why Planning?

• Difficulties in Perceiving and Representing a Complex World 

• Acting in Complex Environments 

• Generalization to Unseen Cases and Tasks 

• Enabling generalization to unseen situations and novel combinations of known 
skills 

• Allowing agents to adapt to new tasks and environments 

• Inference-Time Adaptivity
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Why Planning?

• Difficulties in Perceiving and Representing a Complex World 

• Acting in Complex Environments 

• Generalization to Unseen Cases and Tasks 

• Inference-Time Adaptivity 

• Allowing for inference-time adaptivity, enabling agents to adjust their strategies on 
the fly and allocate computational resources efficiently during decision-making
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Why Learning for Planning?

• A.k.a. using a big neural network 
trained with gradient descent on 
tons of data! 

• It is too hard to learn with limited 
robot-specific data.
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Pure Learning Pure Planning

• It involves numerous engineered 
components specific to tasks. 

• It is hard to directly apply to 
open-world settings that robot 
doesn’t know ahead of.

Can we keep the flexibility of learning while the benefits of planning?



Outline

• Background: Learning for Planning and World Modeling 

• Part 1: Lossless Abstraction of World Representation and Planning 

• Typically within a “flat” MDP 

• E.g,. Geometric Structure, including symmetry and compositionality 

• Part 2: Lossy Abstraction of World Representation and Planning 

• Typically with hierarchies, such as high-level and low-level 

• E.g., Using symbols/language or maps

10



Background:  
Learning for Planning  
and World Modeling
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Modeling the Environment

12

Observations

(Belief) State

High-level Action

Low-level Action

Perception

Planning

Control

Typically modeled as a (PO)MDP 

A classic robotics stack: 

• Perception: Extract features from past observations 

• Planning: Produce sequence of high-level actions 

• Control: Ground into low-level motor actions 

A naive approach: End-to-end learning  

Inefficient, Poor Generalization, and Brittle

at = πθ(st)



Modeling the Environment

Typically modeled as a (PO)MDP 

A classic robotics stack: 

• Perception: Extract features from past observations 

• Planning: Produce sequence of (high-level) actions 

• Control: Ground into low-level motor actions 

My research:  
Using Learning for World Modeling and Planning 
with Proper Structure
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World Modeling and Planning
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Observations

(Belief) State

High-level Action

Low-level Action

Perception

Planning

Control

World Modeling: 
Building good state representation  
(e.g,. learning a vision encoder / gathering information) 

Building good dynamics model  

Planning: 

Producing sequence of actions 

st = h(o1:t)

st+1 = f(st, at)

at:t+H = π(st, g)



Why Joint World Modeling and Planning?

Further Challenge: 
It is challenging to pre-specify state representation 
for open-world (truly unseen) environments. 

Example: 
A robot tasked to remove some tools in a cabinet. 
It needs to represent uncertainty in object existence 
and properties.
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How Joint World Modeling and Planning?
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High-level Action
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Control Previous: MuZero for Go (Schrittwieser et al. 2019), … 

Recent: VLM for task planning (E.g., Driess et al. 2023), …



Challenges and Considerations

• Promising; but needs lots of data to train! 

• Can we make use of the structure of the tasks and 
the algorithmic stack to reduce the complexity? 

• More Structure in Algorithms 

• Consider the training data sources and model 
complexity for different components 

• More Structure in Tasks, e.g., abstraction 

• Exploit efficient structure from environments and 
tasks to
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State & Action Abstraction

A Theory of Abstraction in Reinforcement Learning. David Abel, PhD Thesis 2020.
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Reinforcement Learning: An Introduction. Andrew Barto and Richard S. Sutton 2018.

State Abstraction 
(State Partition)

Action Abstraction 
(Options)



Planning in the abstracted model

A Theory of Abstraction in Reinforcement Learning. David Abel, PhD Thesis 2020.
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Lossless vs. Lossy Abstraction

• View state representation 
using terminology in 
compression 

• It decides the behaviors 
of planning: 

• Lossy representation 
may need additional 
grounding of abstract 
plan to the original 
space
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Part 1: Lossless Abstraction of 
World Representation and Planning
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Lossless Abstraction
MDP Homomorphism and Value Equivalence

• “Lossless” here refers to abstraction 
that preserves optimal ground policy 

• MDP Homomorphism defines a 
mapping from the ground MDP to a 
reduced MDP that preserves its 
“structure” 

• Including optimal values and policies

[Ravindran & Barto, An Algebraic Approach to Abstraction in Reinforcement Learning, 2003]
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A symmetric gridworld problem. 

“A” and “B” states are equivalent 
because each action at A exists an 
equivalent action at B.



Lossless Abstraction Induced by “Structure”

• Use e.g,. symmetry and 
compositionality properties of the 
tasks to induce abstracted MDP 

• May reduce number of free 
parameters and solution space 

• Result in better efficiency, 
generalization, scalability, …
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2D Discrete Map Rotation

2D Discrete Symmetry D4

{ } { }
Object Interchangeability

Permutation Symmetry SN



Integrating Symmetry into Planning
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Zhao, Zhu, Kong, Walters, Wong. “Integrating Symmetry Into 
Differentiable Planning With Steerable Convolutions”. ICLR 2023.

Can we use symmetry to 
improve learning-based 
planning, while keeping 
end-to-end learnable?



Path Planning

Find shortest path / 
optimal actions to the 

goal location (red)
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Zhao, Zhu, Kong, Walters, Wong. “Integrating Symmetry Into Differentiable 
Planning With Steerable Convolutions”. ICLR 2023.



Symmetry in Path Planning

What does the 
symmetry look 

like?
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Symmetry in Path Planning

What does the 
symmetry look 

like?

Equivariance

They can be described by

↺ 90∘ ∘ (Plan(M)) = Plan( ↺ 90∘ ∘ M)
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Symmetry: All Rotations and Reflections
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Symmetry: Rotations

r r r
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Symmetry: Rotations and Reflections

r r r
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Symmetry: All 8 Transformations in D4

r r r

r

f f f f

rr
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Difficulties in Exploiting Symmetry

• Classical planning algorithms need 
explicit representation of the MDP  

• E.g., transition dynamics  

• Finding a homomorphic MDP is NP-
hard problem 

• Can we avoid: 
(1) NP-hard orbit search of equivalent 
state-action pairs and (2) explicitly 
representing the reduced MDP? 

ℳ

P
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A symmetric gridworld problem. 

“A” and “B” states are equivalent 
because each action at A exists an 
equivalent action at B.

[Ravindran & Barto, An Algebraic Approach to Abstraction in Reinforcement Learning, 2003]



Value Iteration with Symmetry

↺ 90∘ ∘ VI(M) ≡ ↺ 90∘ ∘ 𝒯∞[V0] = 𝒯∞[ ↺ 90∘ ∘ V0] ≡ VI( ↺ 90∘ ∘ M)

Every update is equivariant 
— Local Equivariance

Entire planning is equivariant
— Global Equivariance

Q̄(k) = R̄a + Conv2D(V̄(k−1); WV
ā ) Q̄(k)

ā = R̄ā + SteerableConv(V̄; WV)

• Use steerable convolution, equivariant to rotation and reflection:

Replace
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Main Pipeline: Symmetric Value Iteration Network

We use steerable convolutions to integrate symmetry in VINs.

Every pair is equivariant
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Visualization: VIN
Feed in  andM ↺ 90∘ ∘ M

VIN output doesn’t satisfy equivariance
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Visualization: SymVIN

SymVIN guarantees output is equivariant

Feed in  andM ↺ 90∘ ∘ M
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Experiment: Maze Navigation
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Visualized
Panoramic

View

(4 Directions)

2D and Visual Maze Navigation

More efficient training; Higher asymptotic performance



Results: Evaluation on test maps

• Better generalization on novel maps 

• Test novel maps are not necessarily rotated version of training maps
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Theoretical results

Theorem 2 (informal): Value iteration for path planning* is a form of 
steerable convolution network**

Cohen et al. (2017): Steerable CNNs, ICLR 2017

*: Path planning on 2D grid, an example of homogeneous spaces 
**: Steerable CNN over grids, equivariant under induced representations

Theorem 1 (informal): Value iteration for path planning* is 
equivariant to translation, rotation, and reflection
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Follow-up: Path Planning on Graphs
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Zhao*, Li*, Padir, Jiang†, Wong†. “E(2)-Equivariant Graph Planning for Navigation”. 
RA-L 2023 & IROS 2024 (Oral).

We extend path planning with 2D convolution to graph 
convolution and message passing layers on graphs.



Challenge: Camera/View Layout

Robots may only have K views 

• Naive equivariance only allow  

 (or ) rotation symmetry 

• We lift it to  to allow 
continuous symmetry in 
downstream planning network 

Commutative diagram of the  
lift layer:

CK
360∘

K
SO(2)
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Object Compositionality in World Modeling

42

Observations

(Belief) State

High-level Action

Low-level Action

Perception

Planning

Control

When object structure 
presents, the state 
space may be factored 
into e.g., slots.

This implicitly produces a reduced MDP. 
How to represent and plan in this MDP 
while keep differentiable?

Zhao, Kong, Walters, Wong. “Toward Compositional Generalization 
in Object‑Oriented World Modeling”. ICML 2022 (Oral).

{ } { }
Object Interchangeability

Permutation Symmetry SN



Key Ideas
Object Compositionality in World Modeling and Planning

• Objects don’t have order / 
universally unique identifier 

• When learning a model and 
planning, actions and slots need 
to bind correctly to the desired 
objects 

• Correct binding provably induces 
a smaller “slot MDP” for more 
efficient planning
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Other Work
On Structured Learning, Lossless Representation and Extension
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Equivariant Sampling 

Zhao, Howell, Zhu, Park, 
Zhang, Walters†, Wong†. 

WAFR 2024.

Symmetric Representation 

Park*, Biza*, Zhao, van de 
Meent, Walters. 

ICML 2022.

Implicit Differentiation  
for Planning 

Zhao, Xu, Wong.  
ICLR 2023.



Summary
Lossless Abstraction of World Representation and Planning

• ✅ By retaining all critical information from the environment, lossless 
abstractions allow for exact and high-fidelity planning. 

• ⚠ Lossless representations environment can be computationally intensive 
due to high-dimensional state and action spaces. 

• ⚠ Applying these methods in large-scale, dynamic environments is 
challenging.
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Part 2: Lossy Abstraction of World 
Representation and Planning
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Real-world Lossless representation + Planning is Too Hard
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We have to abandon some details!

Spot has 6 cameras (5 body + 1 in-hand)



“Lossy” Abstraction
Examples
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Symbolic/Language-based Representation 
Planning: Options/Operators/Skills

Abstract Maps 
Planning: 2D Paths

Konidaris et al. From Skills to Symbols: Learning Symbolic Representations for Abstract High-Level Planning. IJRR 2018. 
Silver et al. Learning Neuro-Symbolic Skills for Bilevel Planning. CoRL 2022. 
Xu et al. Robot Navigation in Unseen Environments using Coarse Maps. ICRA 2024.



“Lossy” Abstraction
Examples: Language
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“Lossy” Abstraction

• It typically involves hierarchical structure. 

• The high-level representation is typically engineered to be highly 
abstracted from details. 

• Example: symbolic representation. For efficient planning, they typically 
abandon details, e.g., geometric features. 

• Planners need to be aware of the abstraction and ground abstract actions.
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Leslie Pack Kaelbling and Tomás Lozano-Pérez, Hierarchical Planning in the Now. ICRA 2011. 
Leslie Pack Kaelbling and Tomás Lozano-Pérez, Integrated Task and Motion Planning in Belief 
Space, International Journal of Robotics Research, 2013



Symbolic Planning with Parameterized Skills
Bilevel Planning

Idea: 

• Build a high-level symbolic 
model 

• Hand-design skills+operators 

• Use AI planner to solve high-
level planning problem 

• Then ground symbolic 
actions to physical world

51
Credit: Kumar, McClinton, Silver et al.



Planning to Practice Skill Parameters
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Control

Planning in abstract symbolic space enables long-
horizon behaviors 

When planning in abstract symbolic space, it 
couldn't provide physically grounded actions 

With symbolic planners, how do we ground them?

Kumar*, Silver*, McClinton, Zhao, Proul, Lozano-
Pérez, Kaelbling, Barry. “Practice Makes Perfect: Planning to 

Learn Skill Parameter Policies”. RSS 2024.
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Idea: Planning to Practice Skills
Practice Skills that Expect Most Improvement via Sampling!
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Idea: Planning to Practice Skills
Practice Skills that Expect Most Improvement via Sampling!
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Planning enables long-horizon behaviors, allowing practicing skills’ parameters



Idea: Planning to Practice Skills
Practice Skills that Expect Most Improvement via Sampling!
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Planning enables long-horizon behaviors, allowing practicing skills’ parameters
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Example — Mobile Manipulation
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Takeaways
Planning to Practice Parameterized Skills

• ✅ Planning in efficient symbolic representation enables long-horizon 
robot tasks in real-world 

• ✅ Real-robot interactions are needed for grounding a symbolic plan into 
a physically plausible plan when no simulator is available 

• ⚠ The planner assumes full observability and complete knowledge about 
the initial state of the world — Strong assumption for mobile robots
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Integrating Perception and Belief-space Planning
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Observations

Belief State

High-level Action

Low-level Action

Perception

Planning

Control Zhao*, McClinton*, …, Wong†. “Planning to Perceive: Toward Mobile 
Manipulation Under Uncertainty In Open-World Environments”. In 

Preparation.

What if we don’t know the full state of the world? 
For example: “Remove unused objects in a drawer”
We need to represent belief and plan in belief space



Motivating Example
Information Gathering is Needed for Building World State

• We want the robot to operate in open-
world environment without full prior 
knowledge. 

• E.g., “remove empty cups” 

• The robot doesn’t know some object 
properties. 

• E.g., whether cups are empty or not.
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Can robot plan to gather such 
information? Yes! 

It needs: 

• Represent its uncertainty on 
the unknown properties via 
belief state 

• Plan in belief space to take 
actions to minimize 
uncertainty
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Motivating Example
Integrating Belief-space Planning for Building World State



High-level Idea
Integrating Perception and Belief-space Planning Guided by VLMs

• Instruction: “pick up keys in red” 

• The agent is deployed in a new room  
without prior knowledge of: 

• Object Existence 

• Symbolic Goals 

• Object Properties  
(e.g., colors, emptiness)
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Demo Task Setup

• Spot robot in a new room without 
prior knowledge of the world 

• It has belief-space operators+skills 

• Spot needs to: 

• 1) “See” the objects 

• 2) Perceive the object properties 

• 3) Ground instruction into info 
gathering subgoals 

• 4) Plan in belief space
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Approach: Planning to Perceive
VLM-guided Perception, Grounding, and Belief-space Planning

• Grounding a high-level instruction into symbolic goals and objects 

• 1) Using VLM to propose objects robot sees 

• 2) Using VLM to parse the scenes into (a sequence of) subgoals 

• Perceiving object relational properties (belief-space predicates) 

• Using VLM to perceive object properties (True/False) and uncertainty 

• Belief-space Task Planning 

• Planning with belief-space operators using ternary predicates
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Placeholder: Demo video with 3 cups
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4x



Takeaways
Integrating Perception and Belief-space Planning Guided by VLMs

• ✅ Integration of perception and belief-space planning at “inference time” 
enables strategic information gathering for modeling world state 

• ✅ Planning in symbolic belief space enables long-horizon behaviors 

• ✅ With a structured pipeline, large models guide the robot to adapt to 
open-world environment 

• ⚠ The system still needs to hand design belief state representation
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Next: Eliminate Explicit State Representation?
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⚠ It can be very challenging on 
engineering explicit representation: 

open-world scenarios, diverse objects, 
uncertainty, partial observability…

💡 Pretrained large models “understand” 
language and images. 

Are they good enough for predicting high-
level plan using raw observations?



How Joint World Modeling and Planning?
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High-level action is a boundary: 

 
Above: Images to High-level Plan: 
Data may be share across 
embodiments 
 
Below: High-level to Low-level Actions 
Physical data is needed and is hard to 
transfer between robots

VLM planning 
(E.g., Driess et al. 2023)
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Training Zero-shot Navigation

Learning Navigation Policies 

Given State, Map and Goal 
Plan the actions: 

Plan (s, m, g, fϕ)

Agent

Abstract High-level Maps for Guided Planning

Zhao, Wong. “Learning to Navigate in Mazes with Novel Layouts Using Abstract 
Top-down Maps”. RLC 2024.



Summary
Lossy Abstraction of World Representation and Planning

• Lossy abstraction enables computationally feasible high-level planning in 
complex environments, but effectively grounding actions remains a core 
challenge. 

• Instead of end-to-end learning, structured approaches that integrate 
planning with perception and control provide more efficient solution
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Takeaways
Summary

• Effective planning is crucial for agents to perform long-horizon and 
challenging tasks. 

• Integration of structured learning requires much less data 

• Balancing lossless and lossy abstraction is needed 

• For lossy representation, rounding high-level plans into low-level actions 
is a challenge that needs effective solutions 

• Progressing from separate perception and planning modules to 
integrated systems is challenging but could provide more flexibility

72



Thank you!
Linfeng Zhao
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My research: 

Using Learning for World Modeling and Planning with 
Structured Approaches
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