

Integrating Symmetry Into Differentiable Planning With Steerable Convolutions

ICLR 2023 Linfeng Zhao, Xupeng Zhu*, Lingzhi Kong*, Robin Walters, Lawson Wong Khoury College of Computer Sciences, Northeastern University

Path Planning

Find shortest path / optimal actions to the goal location (red)

Motivation — Improve training efficiency and generalization for differentiable planning algorithms

We study a geometric structure of grid — discrete symmetry

Motivation

What does the symmetry look like?

Symmetry in Path Planning

What does the symmetry look like?

They can be described by

Equivariance

 $(\mathfrak{G} 90^{\circ} \circ (\mathsf{Plan}(M)) = \mathsf{Plan}(\mathfrak{G} 90^{\circ} \circ M)$

Symmetry in Path Planning

Symmetry: All Rotations and Reflections

Symmetry: Rotations

Symmetry: Rotations and Reflections

Symmetry: All 8 Transformations in D_4

Background: Value Iteration Networks

- Value Iteration Networks implement Value Iteration by CNNs
- It iteratively applies Bellman operator and differentiates through multiple layers

Tamar et al. Value Iteration Networks. NIPS 2016.

Value Iteration with Symmetry

Every update is equivariant — Local Equivariance

$(\mathfrak{Y} 90^{\circ} \circ \mathsf{VI}(M) \equiv (\mathfrak{Y} 90^{\circ} \circ \mathcal{T}^{\infty}[V_0] = \mathcal{T}^{\infty}[(\mathfrak{Y} 90^{\circ} \circ V_0] \equiv \mathsf{VI}((\mathfrak{Y} 90^{\circ} \circ M))$

$\bar{Q}^{(k)} = \bar{R}^a + \mathbf{Conv2D}(\bar{V}^{(k-1)}; W_{\bar{a}}^V)$

Entire planning is equivariant — Global Equivariance

• Use steerable convolution, equivariant to rotation and reflection:

 $\bar{Q}_{\bar{a}}^{(k)} = \bar{R}_{\bar{a}} + \text{SteerableConv}(\bar{V}; W^V)$

Main Pipeline: Symmetric Value Iteration Network

We use steerable convolutions to integrate symmetry in VINs.

Main Pipeline: Symmetric Value Iteration Network

We use steerable convolutions to integrate symmetry in VINs.

Fully differentiable — Avoids explicitly computing the equivalence classes of symmetric states

> Backed up by theoretical insights — Based on geometric structure of grid — To show next

signals $\mathcal{X}(\Omega)$

I: Represent (value) functions as "fields"

Bronstein et al. (2021): Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges. arXiv.

Key Insights

Theoretical results

Theorem 1 (informal): Value iteration for path planning* is equivariant to translation, rotation, and reflection

Theorem 2 (informal): Value iteration for path planning* is a form of steerable convolution network**

*: Path planning on 2D grid, an example of homogeneous spaces **: Steerable CNN over grids, equivariant under induced representations

Cohen et al. (2017): Steerable CNNs, ICLR 2017

15

Experiment: Setup

2D and Visual Maze Navigation

2-DOF Manipulation In Workspace and C-space

2D Maze Navigation

- Training curves on 15x15 maps
- All networks use 3x3 filters, fixed 30 iterations (shared convolution layers)
- SymGPPN recurrent version of VIN with steerable convolution

Results: Training

2-DOF Manipulation

Results: Evaluation on test maps

Method	Navigation				Manipulation		
(10K Data)	$ $ 15 \times 15	28×28	50 imes 50	Visual	$ 18 \times 18$	36 imes 36	Workspace
VIN	66.97	67.57	57.92	50.83	77.82	84.32	80.44
SymVIN	98.99	98.14	86.20	95.50	99.98	99.36	91.10
GPPN	96.36	95.77	91.84	93.13	2.62	1.68	3.67
ConvGPPN	99.75	99.09	97.21	98.55	99.98	99.95	89.88
SymGPPN	99.98	99.8 6	99.49	99.78	100.00	99.99	90.50

- Evaluation on all 4 tasks
- Our Symmetric Planners outperform all baselines

Visualization: VIN

Feed in M and $\bigcirc 90^{\circ} \circ M$

VIN output doesn't satisfy equivariance

Visualization: SymVIN

Feed in M and $\bigcirc 90^{\circ} \circ M$

SymVIN guarantees output is equivariant

- Introduce a framework for incorporating symmetry into path-planning problems
- Prove that value iteration for path planning can be treated as a steerable CNN
- Show that Symmetric Planners improve in training efficiency and generalization

Contributions

Check out our project website:

http://lfzhao.com/SymPlan

zhao.linf@northeastern.edu

