Learning to Navigate in Mazes with Novel Layouts using Abstract Top-down Maps

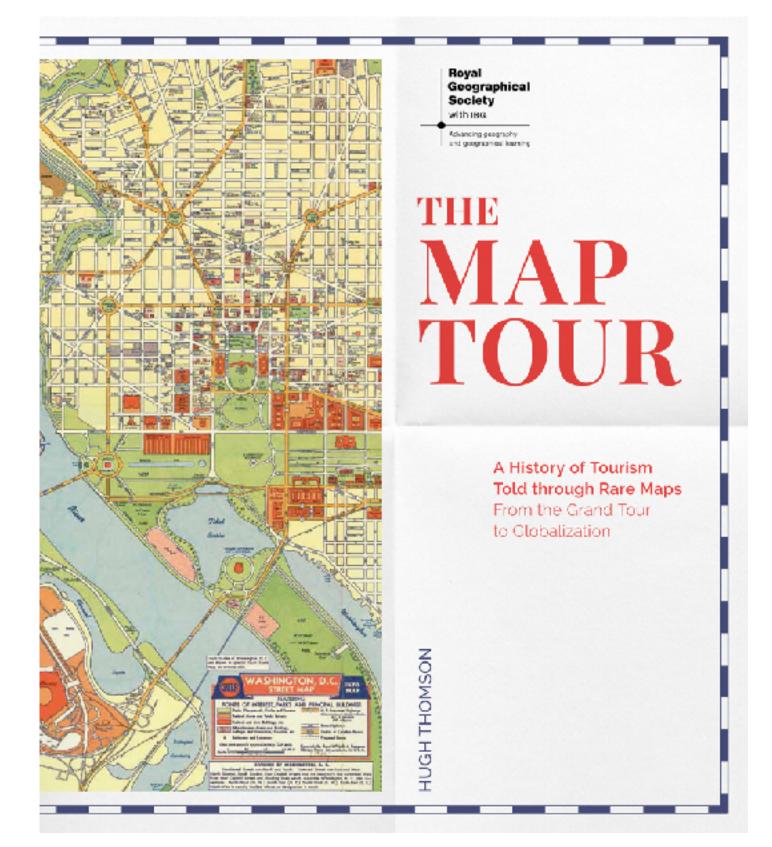
Linfeng Zhao, Lawson L.S. Wong Khoury College of Computer Sciences, Northeastern University

Reinforcement Learning Conference (RLC) 2024

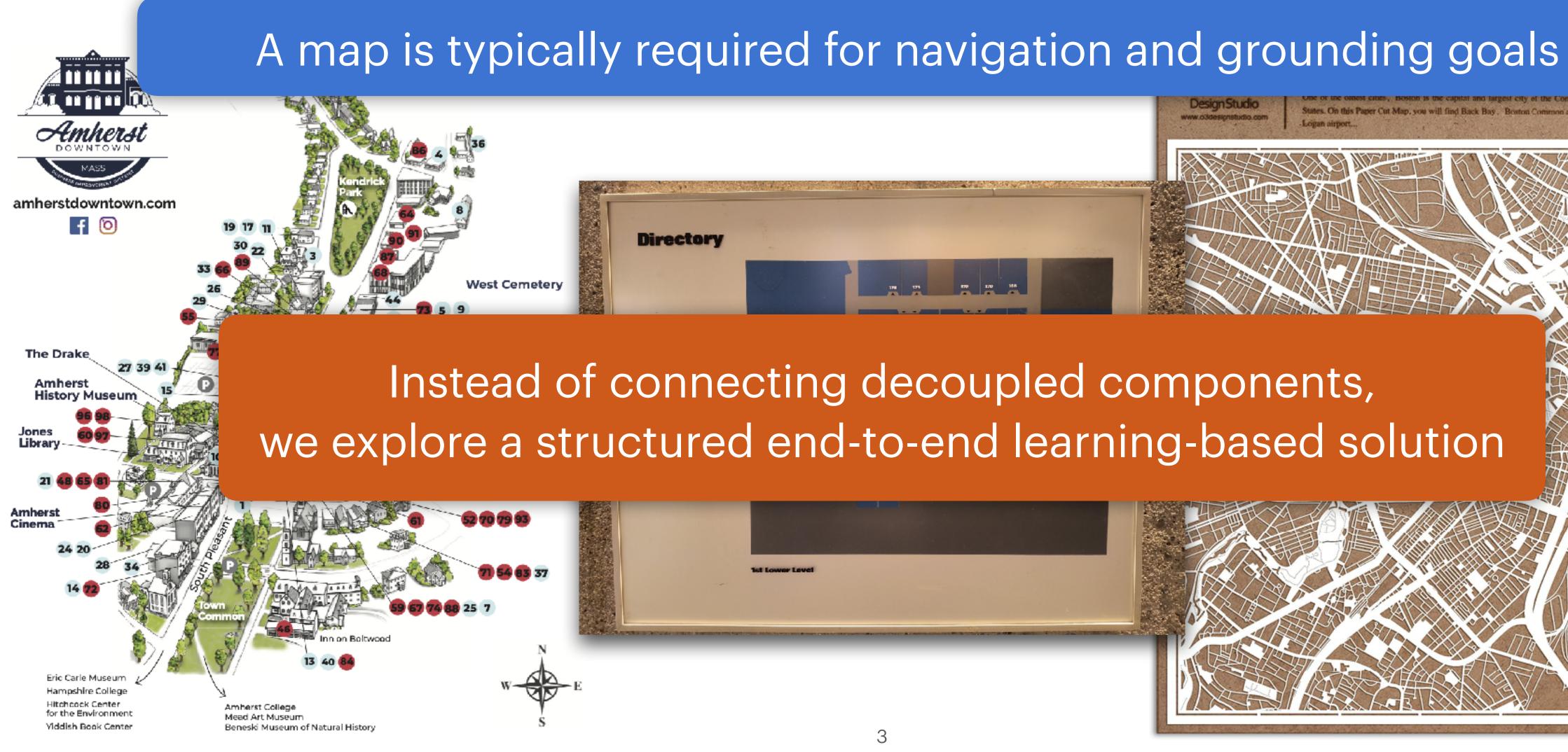
Navigation in a Novel Environment

How do we navigate in environments we've never explored before?

Copyright: © by Westend61

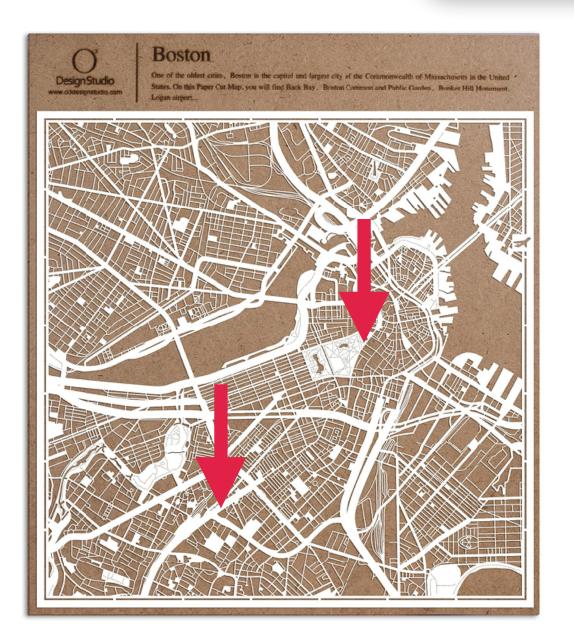


Navigating Novel Environment using Maps



Learning Map-based Navigation Single Task Example

Instead of connecting decoupled components, we explore a structured end-to-end learning-based solution Typical Steps:



Task Input *m* Abstract Top-down Map Step Input *o_t* Environment Observation Given Goal on Map

Localizing it on Map

Navigating on Map Image

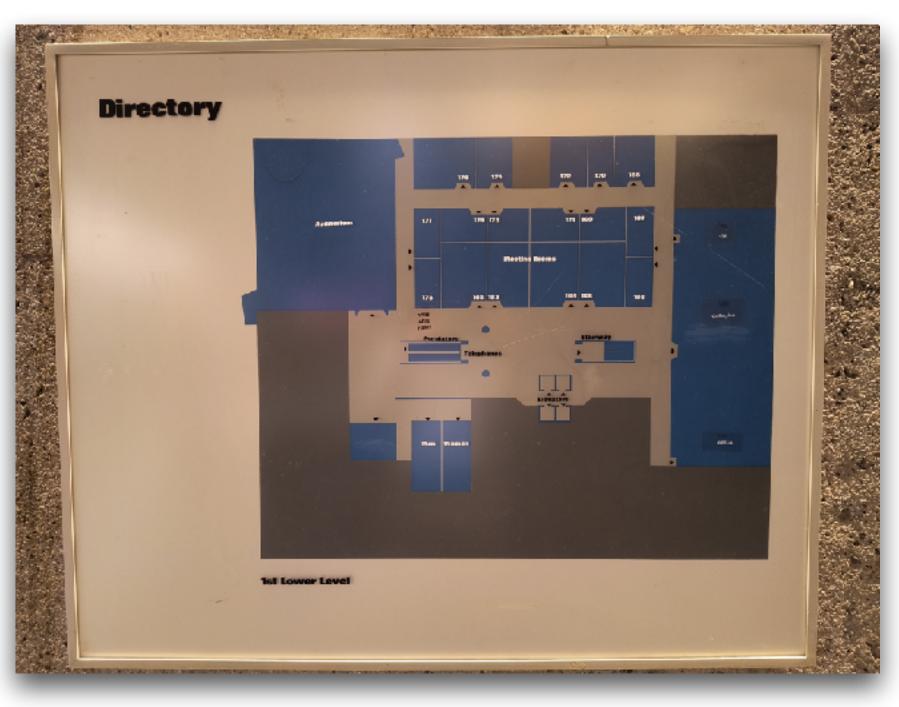
Ground to Actual Actions

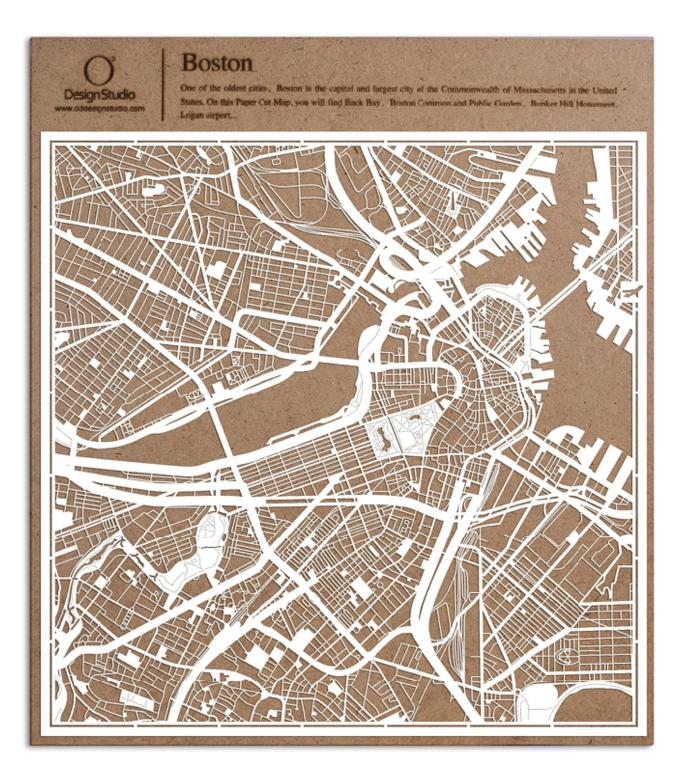
Output an Action

Learning Map-based Navigation Multi-task Training and Generalization

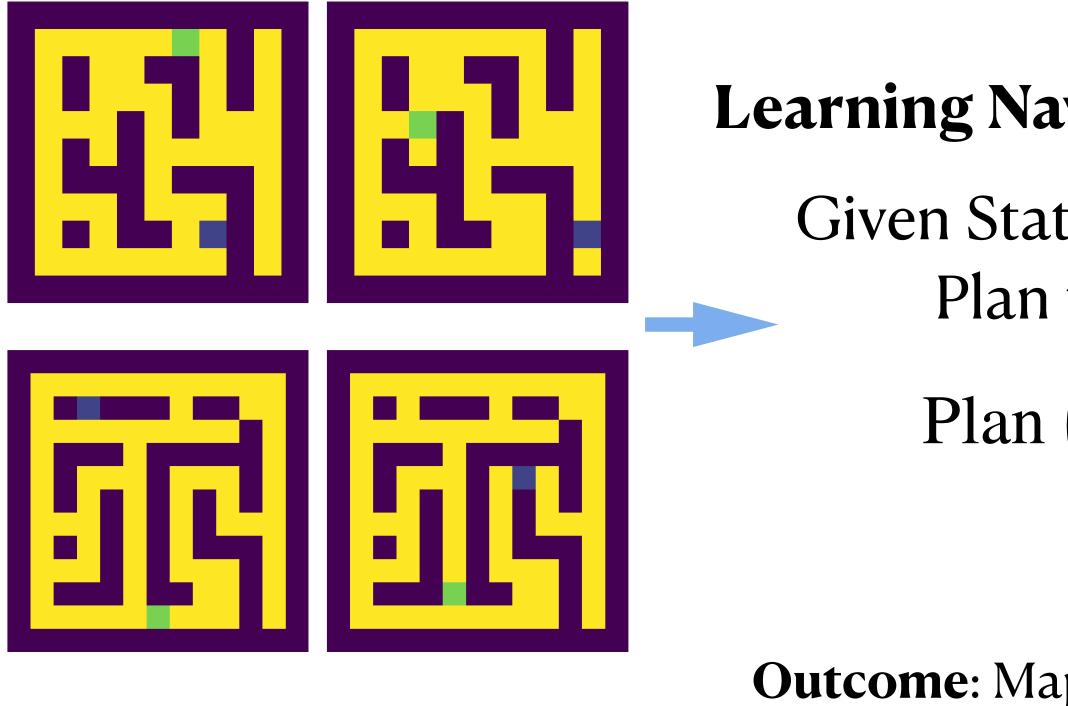
Objective: Train on a distribution of maps to enable generalization to novel maps







Formulation: Map-based Maze Navigation As Multitask & Goal-conditioned RL Problem



Training

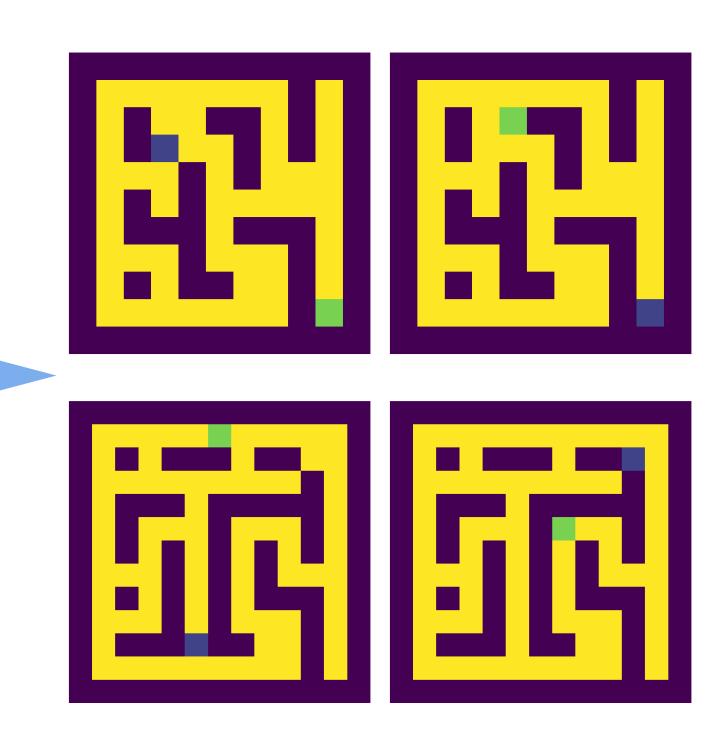
Learning Navigation Behaviors

Given State, Map and Goal Plan the actions:

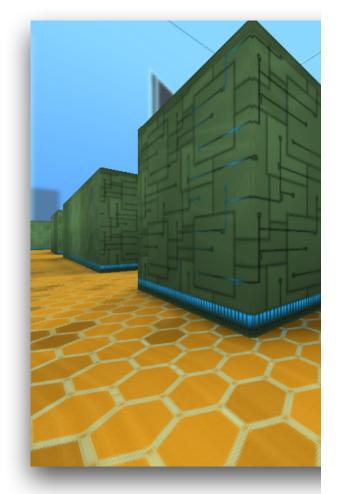
Plan (s, m, g, f_{ϕ})

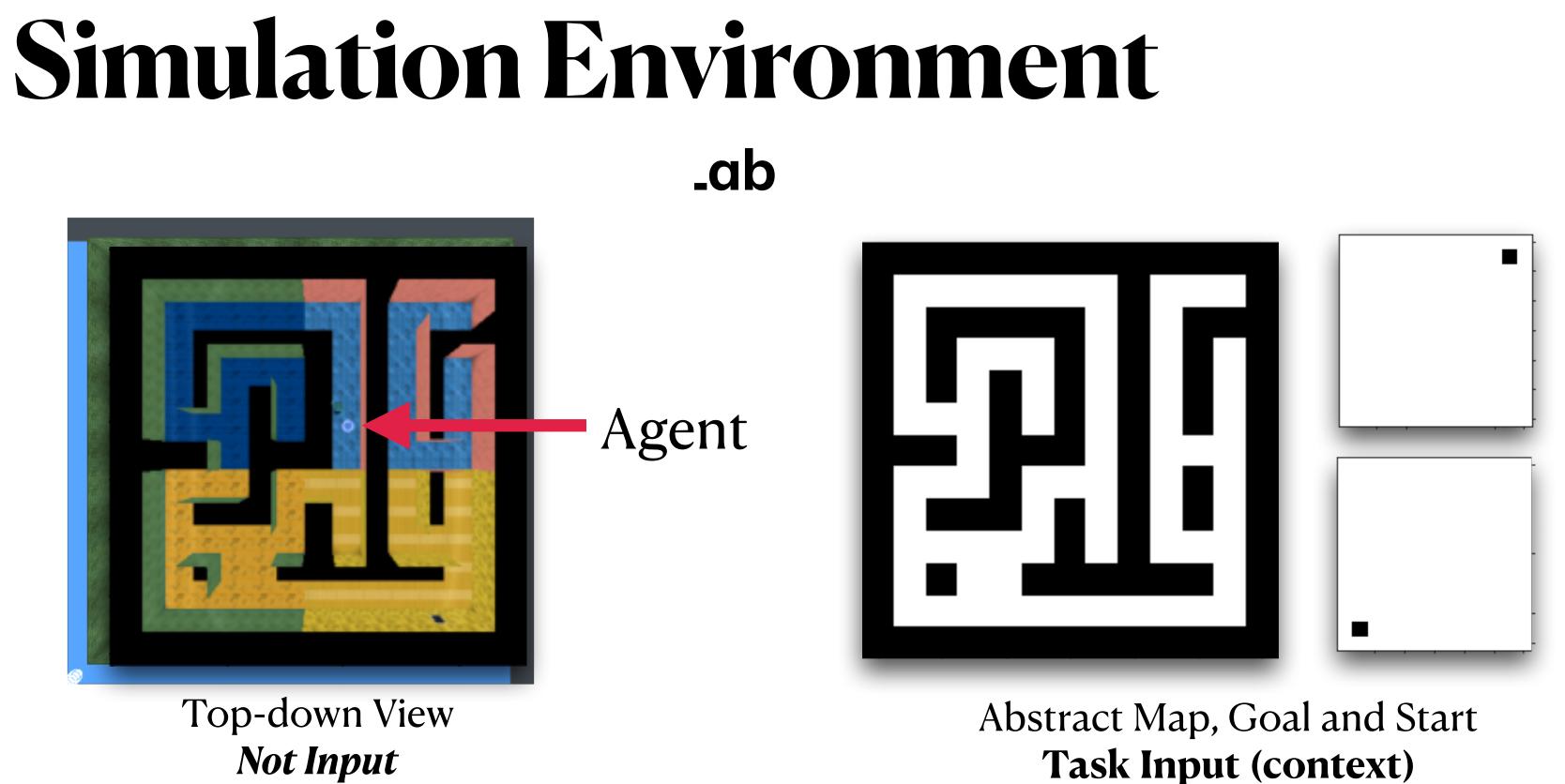
Outcome: Map-conditioned Planner

 $\pi(s, [m, g]; \theta)$



Zero-shot Navigation





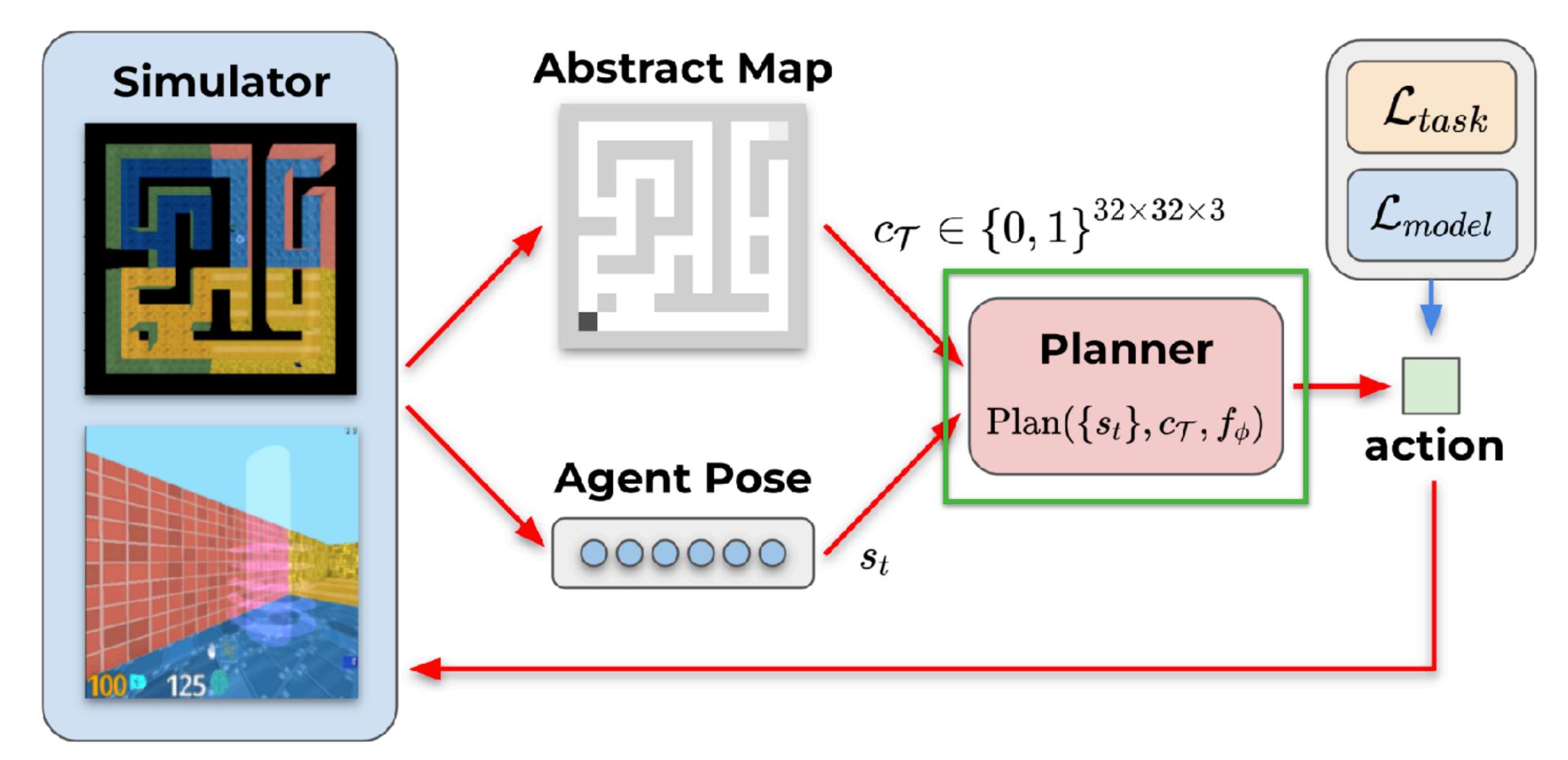
Agent World Not Input

Not Input

- •
- Reward $R_{\mathcal{G}}(s, a) = \mathbb{I}[l(s) \neq g], g \in \mathcal{S}_{\mathcal{G}}$

State space = position $\mathbb{R}^3 \times$ orientation $\mathbb{R}^3 \times$ translational & rotational velocity \mathbb{R}^6 Action space = {forward, backward, strafe left, strafe right, look left, look right}

Overview: Learned Map-conditioned Agent "Map-conditioned Model-based Navigator"

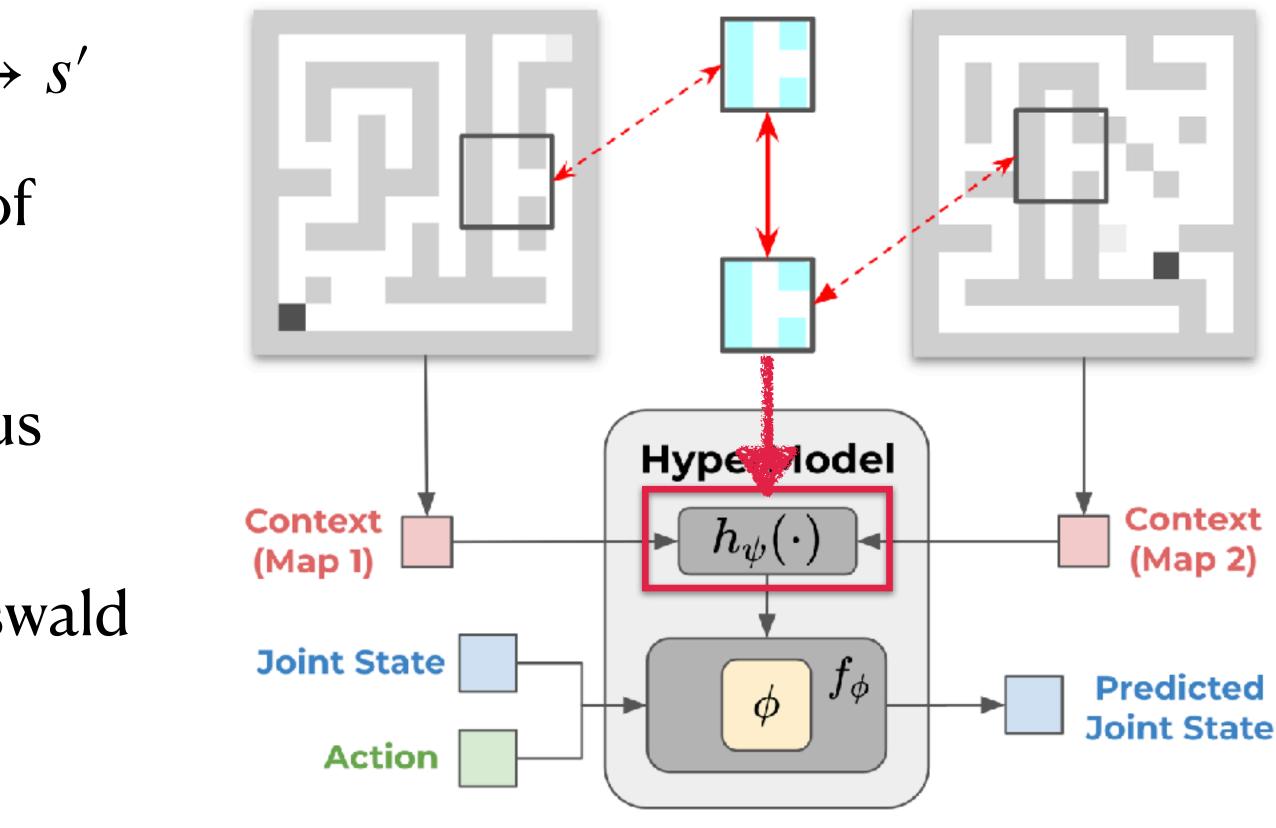


Overview: Key Design "Map-conditioned Model-based Navigator"

- The algorithm and training procedure are similar to MuZero (Schrittwieser et al. 2020) • However, MuZero is designed for single-task
- We design the agent for our (1) sparse-reward goal-conditioned (2) multi-task mapbased navigation setup:
- Use model-based planning approach for longer-horizon planning (MCTS) • Modeling dynamics via HyperNetworks (Ha et al., 2017; von Oswald et al., 2020) • Multi-step Hindsight Experience Replay (HER) for sequence relabelling

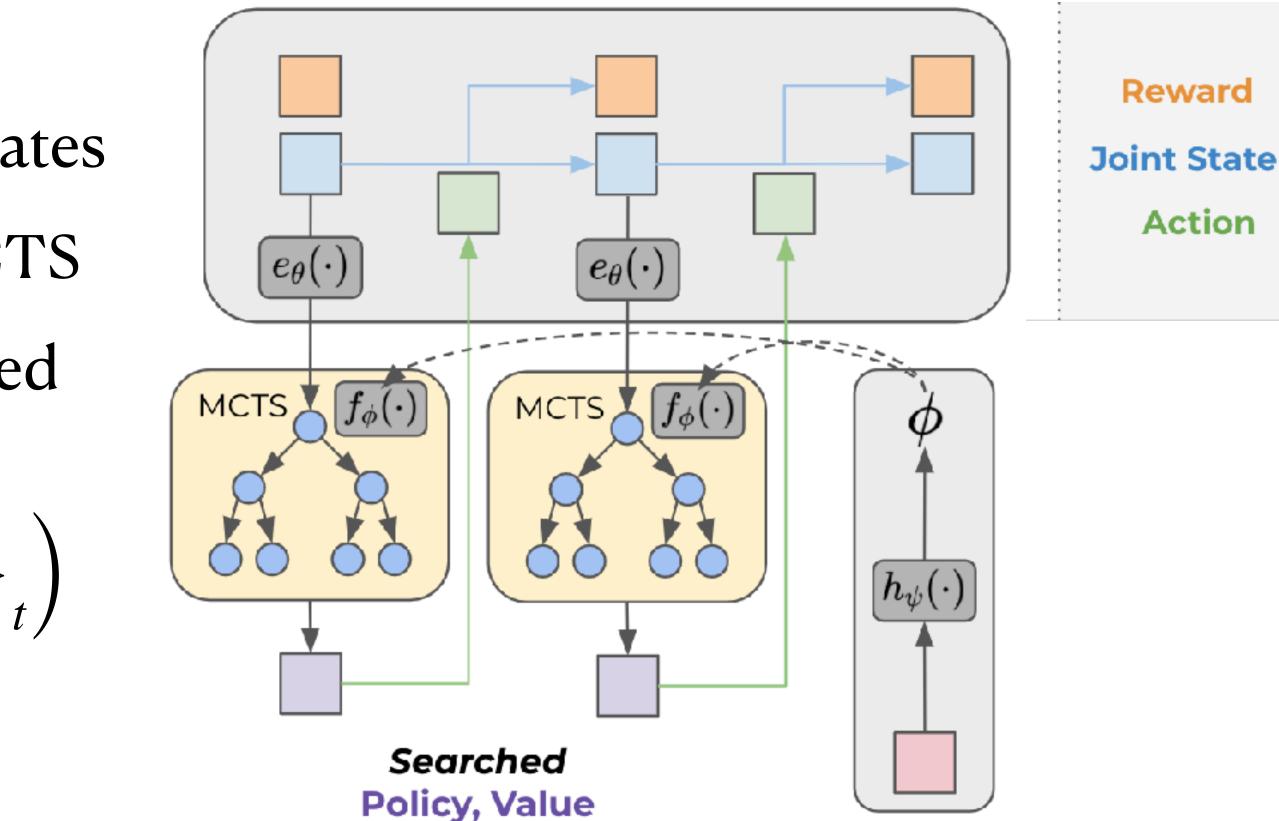
Task-conditioned Hypermodel Forward Pass

- Hypermodel $h_{\psi}: c \mapsto \phi, \quad f_{\phi}: s, a \mapsto s'$
- A hypernetwork h_{ψ} outputs weights of each transition network f_{ϕ}
 - The transition "computation" is thus *shared* between *tasks*
- *HyperNetworks* (Ha et al., 2016; von Oswald et al., 2019)

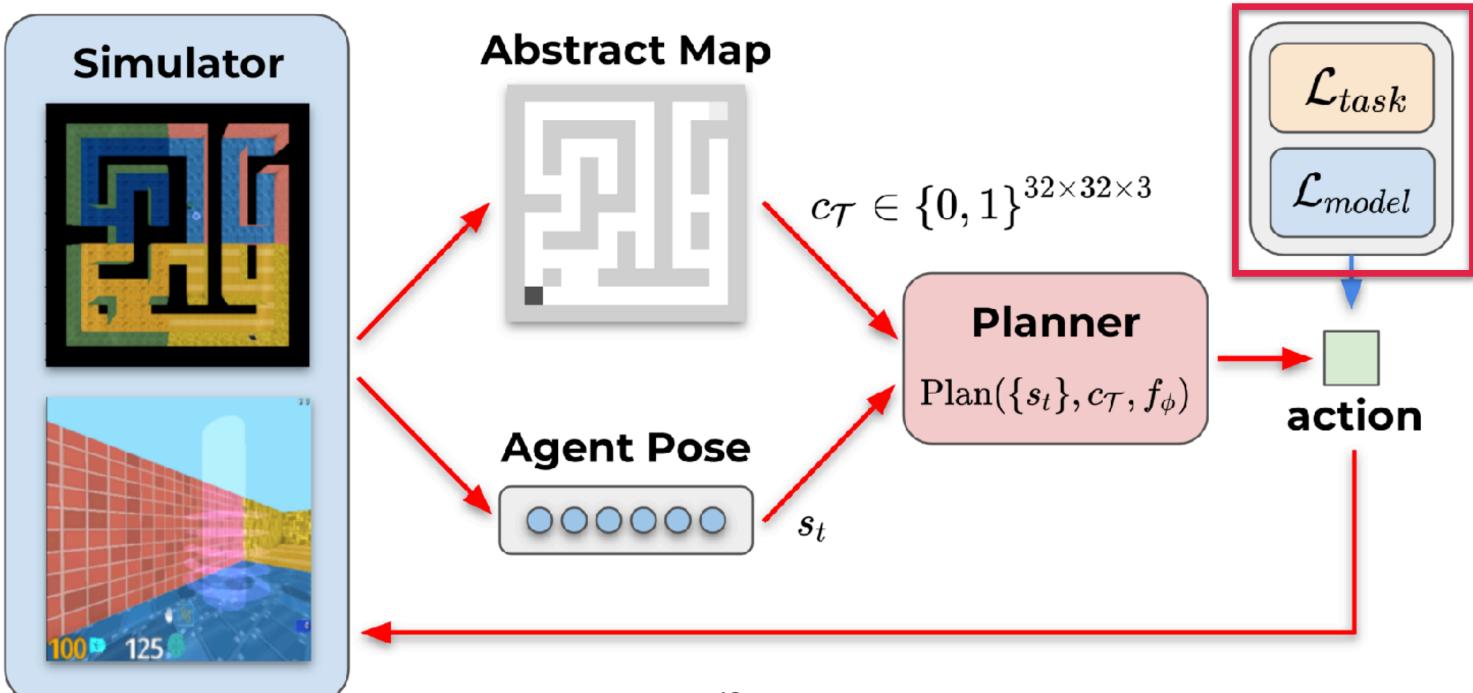


Planning using Learned Hypermodel **Forward Pass / Navigation Computation**

- Planning using *Monte-Carlo tree search*
 - 1. Use hypermodel to predict next states
 - 2. Search policy and value using MCTS
 - 3. Take action sampled from searched policy
 - 4. Repeat, Store $(c_{\mathcal{T}}, \{s_t, a_t, r_t, s_{t+1}\}_t)$



- (2) Auxiliary Model Loss: minimizing hypermodel prediction loss

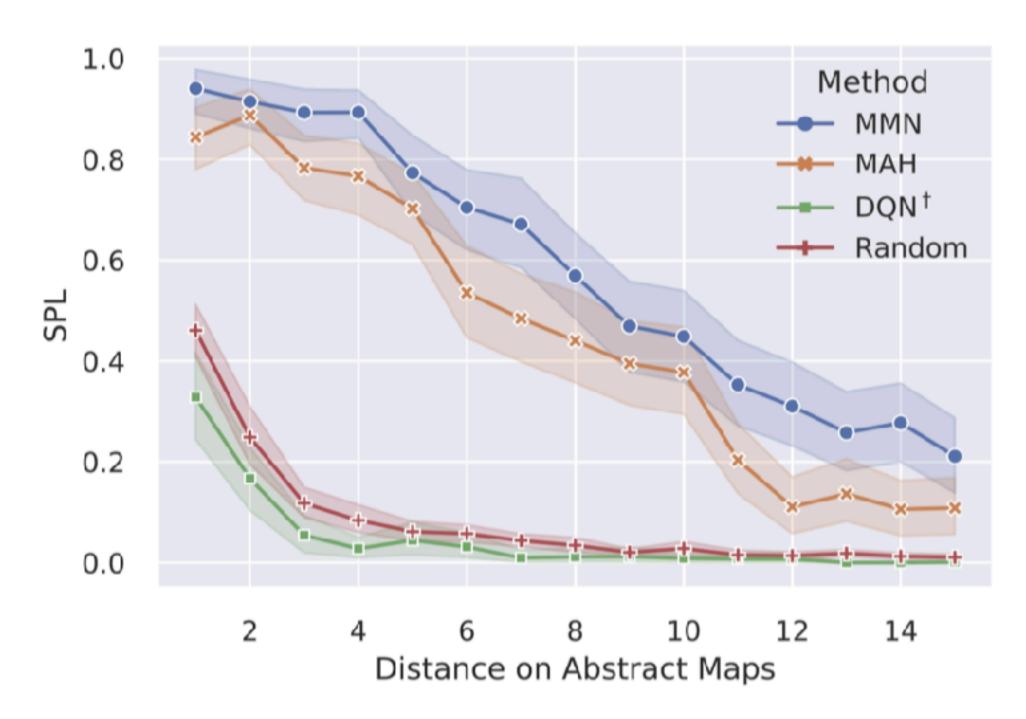


Overview **Training Objectives**

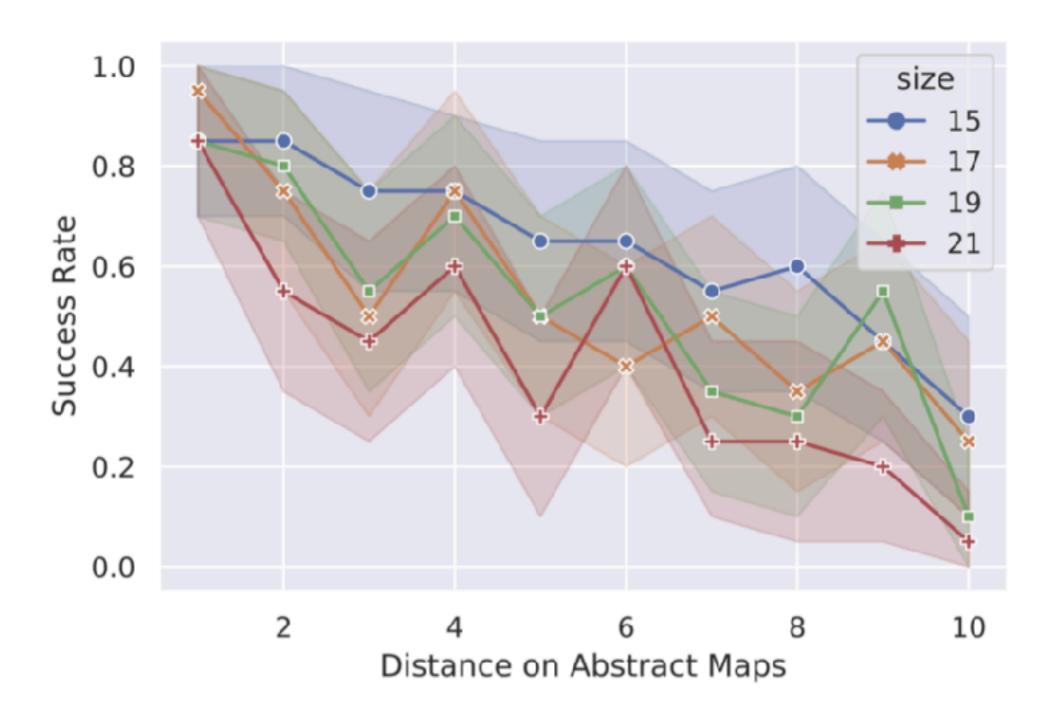
• (1) Task Loss + n-step Goal Relabelling MuZero (Schrittwieser et al., 2019), HER (Andrychowicz et al., 2017)

Zero-shot Navigation on Novel Maps **Key Results**

- •



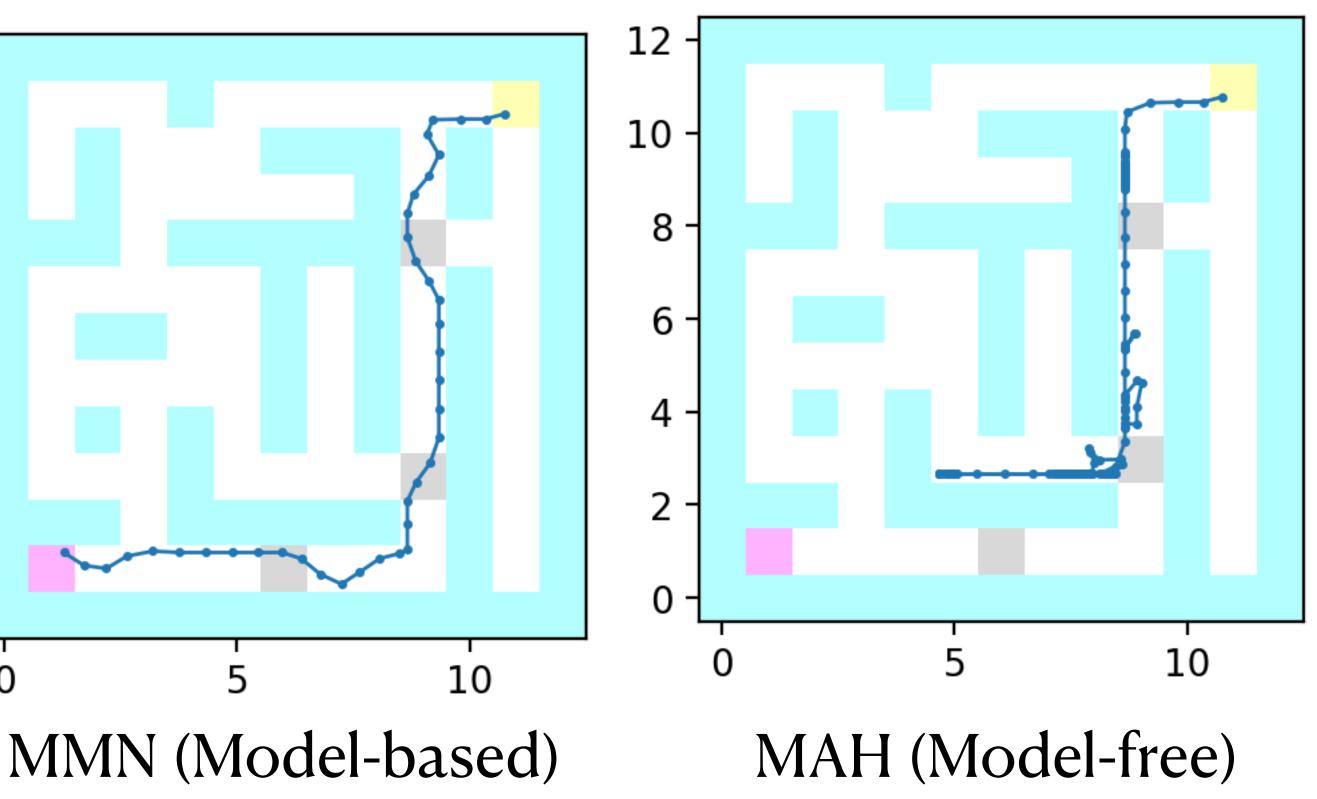
• Evaluating on 20 unseen 13×13 maps with 5 goals in distance [1,15] for each map **MMN** = Map-conditioned Model-based Navigator, *model-based* method; **MAH** = *model-free* variant



Zero-shot Hierarchical Navigation Key Results

- Zero-shot evaluation of trained agents on an unseen map
- Agents use maps as *images*
- Landmarks (grey) are provided by a *oracle*
 - It is *not* required elsewhere
- Our model-based agent generalizes *better* and needs *less exploration* on *unseen* maps

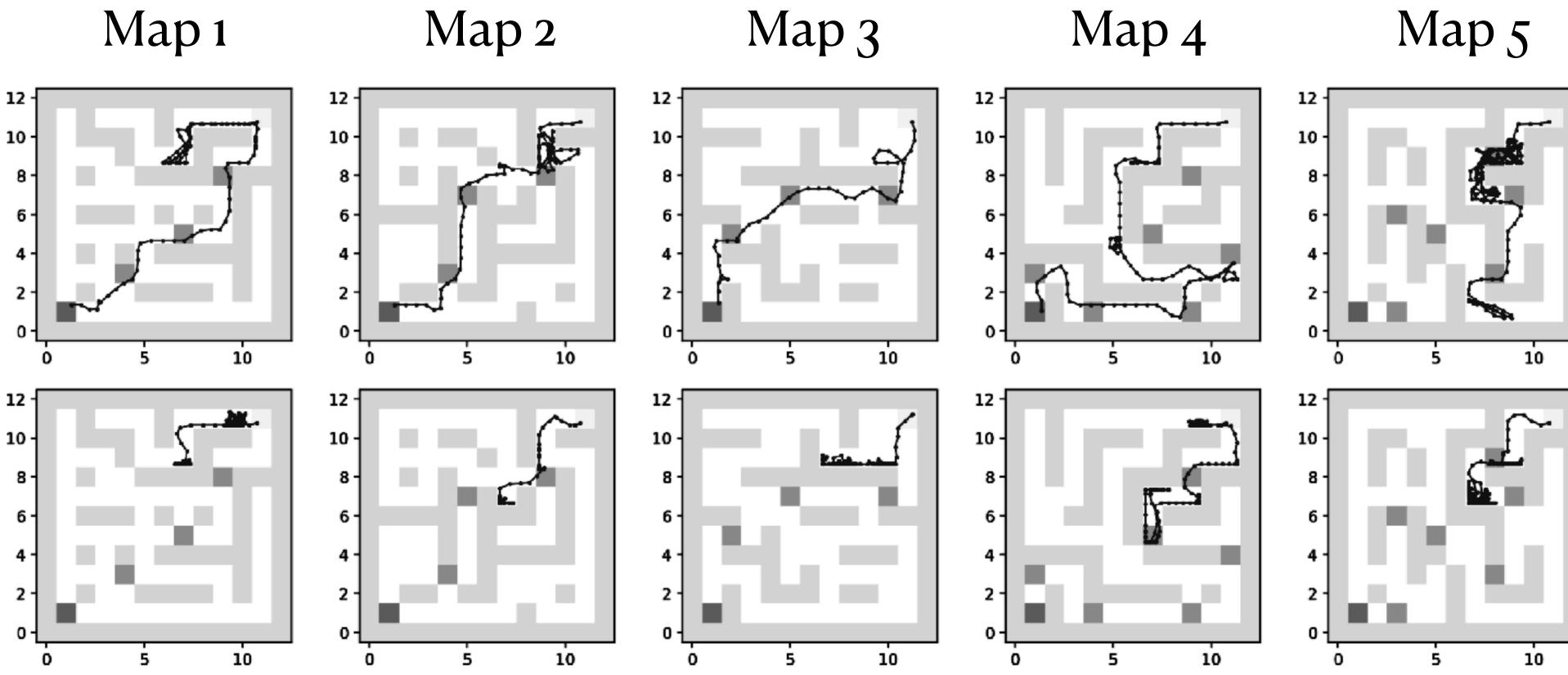
12 -10 -8 -4 -2 -0 -



Zero-shot Hierarchical Navigation Visualization

MMN (Model-based)

MAH (Model-free)



Hierarchical Navigation Task with Landmarks (from top-right to bottom-left)

Zero-shot Hierarchical Navigation **Quantitative: various landmark distances**

Landmark Distance	1	2	3	4	5	5 (SR)
MMN	0.61	0.59	0.68	0.45	0.63	0.80
\mathbf{MAH}	0.24	0.42	0.45	0.41	0.28	0.45
$\mathbf{D}\mathbf{Q}\mathbf{N}^{\dagger}$	0.00	0.00	0.00	0.00	0.00	0.00
Random	0.00	0.00	0.00	0.00	0.00	0.00

- Showing the SPL metric for landmark distances 1~5 and SR for distance 5 only
- Planning-based MMN greatly outperforms MAH (model-free) one and other baselines

• Hierarchical navigation performance for various distances between the landmarks

Please come to our poster session: 08/11 5-7pm Applied reinforcement learning: Room 174/176

Please reach out for more questions: zhao.linf@northeastern.edu

Thank you!

Website:

