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Path Planning
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Find shortest path / optimal actions to the goal location (red)



Background: Value Iteration Networks
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Input Inject

Input Inject

Backward Pass: Explicit Gradient Backward Pass: Implicit GradientForward Pass

• Value Iteration Networks implement Value Iteration by CNNs

• It iteratively applies Bellman operator and differentiates through multiple layers

Tamar et al.  Value Iteration Networks.  NIPS 2016.



Algorithmic Differentiation in VIN

4

Key issue: 
Forward and Backward passes are coupled together

When the planning horizon is long, backpropagation is not scalable, stable, or efficient

Input Inject

Input Inject

Backward Pass: Explicit Gradient Backward Pass: Implicit GradientForward Pass



Implicit Differentiation

• Bellman equation:

• Differentiating both sides: 

• Solving backward fixed-point:
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Bai et al. Deep Equilibrium Models. 2019.
Nikishin et al. Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation. 2021.
Gehring et al. Understanding End-to-End Model-Based Reinforcement Learning Methods as Implicit Parameterization. 2021.



Method: Implicit Differentiable Planners
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Input Inject

Input Inject

Backward Pass: Explicit Gradient Backward Pass: Implicit GradientForward Pass

Algorithmic 
Differentiable 

Planner: 
(ADP) 

VIN

Implicit 
Differentiable 

Planner: 
(IDP) 
ID-VIN



Comparison

• ADPs (e.g., VIN) couple forward and backward passes

• Gradients may explode or vanish
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Algorithmic 
Differentiable 

Planners 
(ADP)

Implicit 
Differentiable 

Planners 
(IDP)

• Our IDPs (e.g., ID-VIN) decouple forward and backward passes

• Implicit differentiation is constant in forward planning horizon

• Allow training to scale up to larger maps and planning horizons with 
stable gradient computation



Experiment: Setup
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Results: Runtime on 2D Nav
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Algorithmic Differentiable Planners Implicit Differentiable Planners



Results: Success Rate
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Summary of Contributions

• We apply implicit differentiation on VIN-based differentiable planning algorithms. 
This connects with deep equilibrium models (DEQ) (Bai et al., 2019).

• We propose a practical implicit planning pipeline and implement implicit version 
of VIN, as well as GPPN (Lee et al., 2018) and SymVIN (Zhao et al., 2022).

• We empirically study the convergence stability, scalability, and efficiency of the 
ADPs and proposed IDPs.
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Thank you!
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http://lfzhao.com/IDPlan
zhao.linf@northeastern.edu

Check out our project website:

http://lfzhao.com/publication/2022-symplan
mailto:zhao.linf@northeastern.edu

