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Path Planning

Find shortest path / optimal actions to the goal location (red)




Background: Value Iteration Networks

Input Inject

* Value Iteration Networks implement Value Iteration by CNNs

e |t iteratively applies Bellman operator and differentiates through multiple layers

Tamar et al. Value Iteration Networks. NIPS 2016.



Algorithmic Differentiation in VIN
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Key issue:

Forward and Backward passes are coupled together

When the planning horizon is long, backpropagation is not scalable, stable, or efficient



Implicit Differentiation

* Bellman equation:

e Differentiating both sides:

* Solving backward fixed-point:

Bai et al. Deep Equilibrium Models. 2019.
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Nikishin et al. Control-Oriented Model-Based Reinforcement Learning with Implicit Differentiation. 2021.
Gehring et al. Understanding End-to-End Model-Based Reinforcement Learning Methods as Implicit Parameterization. 2021.
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Method: Implicit Differentiable Planners

Algorithmic
Differentiable
Planner:
(ADP)
VIN

Implicit
Differentiable
Planner:
(IDP)
ID-VIN
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Comparison

Algorithmic e ADPs (e.g.,VIN) couple forward and backward passes
Differentiable

Planners . |
(ADP) * Gradients may explode or vanish

* Our IDPs (e.g., ID-VIN) decouple forward and backward passes
Implicit

Differentiable * Implicit differentiation is constant in forward planning horizon

Planners
(IDP)

* Allow training to scale up to larger maps and planning horizons with
stable gradient computation




Experiment: Setup

(or by iterative

algorithm) J

Visualizef:l E E ‘ Workspace

Panvc?ramlc : : To C-space

iew ' ~

: : End-to-end
(4 Directions) , : Learned

2D and Visual 2-DOF Manipulation

Maze Navigation In Workspace and C-space




Forward Time

Backward Timeu\f’i-_

N
o
o

100

100

50

Results: Runtime on 2D Nav
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Results: Success Rate
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Summary of Contributions

* We apply implicit differentiation on VIN-based differentiable planning algorithms.
This connects with deep equilibrium models (DEQ) (Bai et al., 2019).

* We propose a practical implicit planning pipeline and implement implicit version
of VIN, as well as GPPN (Lee et al., 2018) and SymVIN (Zhao et al., 2022).

* We empirically study the convergence stability, scalability, and efficiency of the
ADPs and proposed |IDPs.
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Thank you!

I Check out our project website: |

http://Ifzhao.com/IDPlan

zhao.linf@northeastern.edu
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http://lfzhao.com/publication/2022-symplan
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