

E(2) Equivariant Graph Planning for Navigation

IEEE Robotics and Automation Letters (RA-L) Presenting at IROS 2024

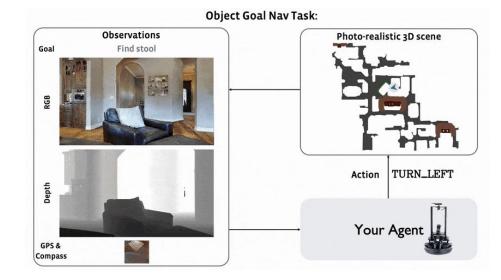
Linfeng Zhao*, Hongyu Li* Taskin Padir, Huaizu Jiang**†**, Lawson L.S Wong**†**

Tackling Point/Object Goal Navigation

We focus on long-horizon path planning in unstructured world

The robot finds a goal specified by:

- a point on the map ("point navigation")
- an object name ("semantic navigation")

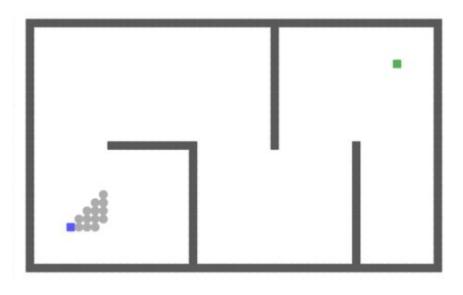


[Example: Habitat Challenge]

Path Planning for Robot Navigation

Classical path planning algorithms for robot navigation need full specification of the environment:

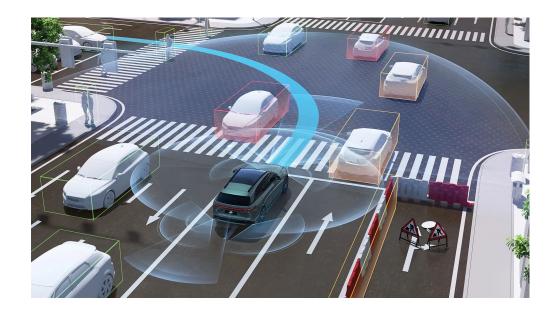
- The state is known and is represented as e.g., occupancy grids
- The transition dynamics is fully known
- Challenging to handle semantic features



Learning-based Planning

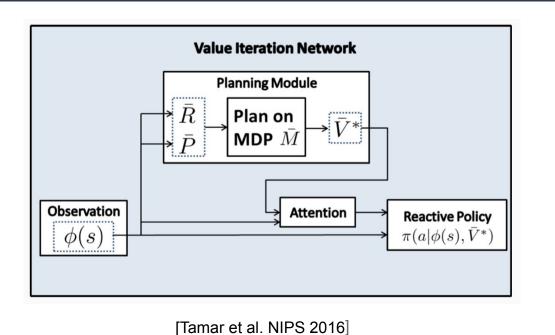
Map visual observations to actions and learn in an end-to-end manner.

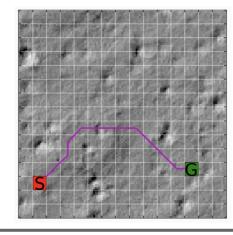
Eliminate the need for explicitly constructing complete intermediate representations.



Background & Formulation

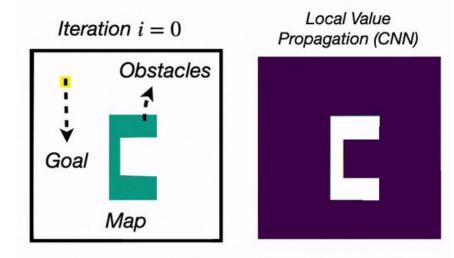
Value Iteration (Networks) for Path Planning





A learning-based approach to perform value iteration on raw images.

Learned Value Iteration Network on 2D Grid



$$Q\left(s,a
ight) \,=\, R\left(s,a
ight) \,+\, \sum_{a} p\left(s'\mid s,a
ight) V\left(s,a
ight)$$

Trained VIN propagates values backward in time to the entire grid.

$$Q_a^{(k)}\,=\,R_a\,+\, ext{Conv2D}\left(V^{(k)};W_a
ight)$$

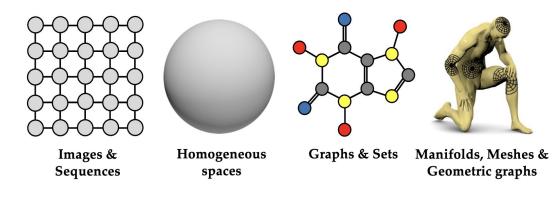
[Chatplot et al., ICML 2021]

Leveraging Symmetry for Efficient Learning

Learning-based approaches need **intensive training data**.

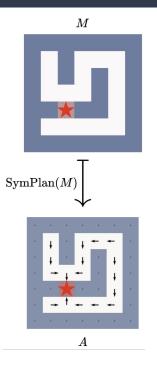
Robots navigating in physical world has **intrinsic symmetry**:

The robot moves on the 2D plane and has 2D translation/rotation equivariance, or E(2) symmetry.



[M. Bronstein et al., Geometric deep learning, arXiv]

Symmetry in Path Planning



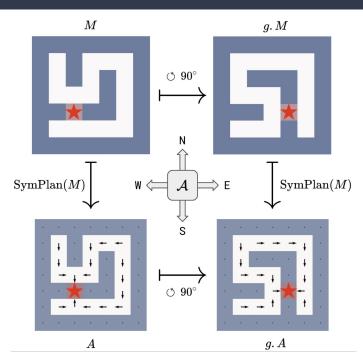
Zhao et al. (ICLR 2023) leverage symmetry in path planning on 2D grid.

[Zhao et al. ICLR 2023]

E(2)-Equivariant Graph Planning for Navigation

9

Symmetry in Path Planning



Zhao et al. (ICLR 2023) leverage symmetry in path planning on 2D grid.

 $\circlearrowleft 90^\circ \circ (\operatorname{Plan}(M)) = \operatorname{Plan}(\circlearrowleft 90^\circ \circ M)$

[Zhao et al. ICLR 2023]

Extending From Planning on Grids to Graphs

Why do we move to graphs?

- 1. **Flexible state representation**: Nodes can represent continuous coordinates w/ features
- 2. **Continuous actions**: Graphs can be expanded to new 2D locations
- 3. **Continuous Euclidean symmetry**: Geometric graphs on 2D are SO(2)-transformable

They are less restrictive and better suited for unstructured environments.

Question: How to achieve path planning in unstructured environments, e.g., graphs with continuous Euclidean symmetry?

Approach: E(2)–Equivariant Graph Planning Network

Desiderata: A Learned Planner for Navigation

1) Generalizable and long-horizon navigation

We enable the model to learn to plan on graphs to generalize to different goals

2) Data efficiency in learning

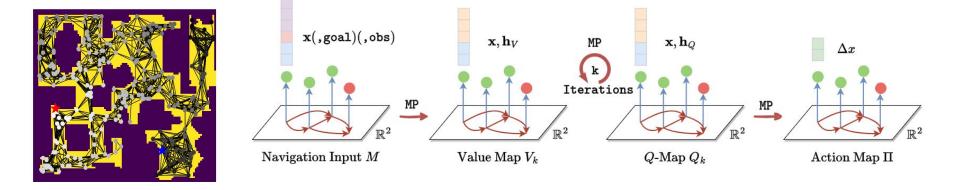
We inject symmetry into the planner model to learn from limited data

3) Handling camera inputs

Enable mapping perception from finite camera views by a learned lifting layer

For 1: Message Passing for Planning on Graphs

We extend Value Iteration Network on 2D grids (with CNN) to Value Iteration with message passing networks on **graphs**



For 1: Message Passing for Planning on Graphs

We develop the message passing version with following steps:

- Value iteration is written by integral over next states
- The integral is over the 2D plane, which can be written as a convolutional kernel
- We construct a graph by sampling finite points

$$egin{aligned} Q_t(oldsymbol{s},oldsymbol{a}) &:= R(oldsymbol{s},oldsymbol{a}) + \int_{\mathbb{R}^2} doldsymbol{s}' P(oldsymbol{s}' \mid oldsymbol{s},oldsymbol{a}) V(oldsymbol{s}'), \ V_{t+1}(oldsymbol{s}) &= \max_{oldsymbol{a}} Q_t(oldsymbol{s},oldsymbol{a}), \end{aligned}$$

$$oldsymbol{h}'(oldsymbol{x}) = \left[oldsymbol{K} \star oldsymbol{h}
ight](oldsymbol{x}) = \int_{\mathbb{R}^2}oldsymbol{K}(oldsymbol{x}' - oldsymbol{x})oldsymbol{h}(oldsymbol{x}'),$$

For 2: Enable E(2)–Equivariance in Message Passing

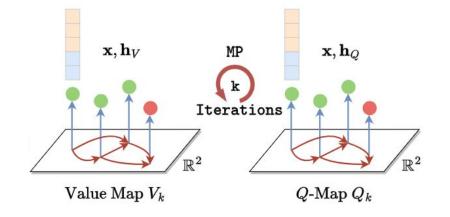
Vanilla Message Passing Networks don't support equivariance

The Value Iteration operation on graph can be equivariant through enforcing equivariance constraints

$$oldsymbol{m}_{ij} = ext{propagate}_{ heta} \left(oldsymbol{h}_i, oldsymbol{h}_j, oldsymbol{x}_i, oldsymbol{x}_j
ight), \ oldsymbol{h}_i' = ext{update}_{ heta} \left(oldsymbol{h}_i, \sum_{j \in \mathcal{N}(i)} oldsymbol{m}_{ij}
ight).$$

$$g \cdot \operatorname{MP}_{ heta}(V) = \operatorname{MP}_{ heta}(g \cdot V)$$

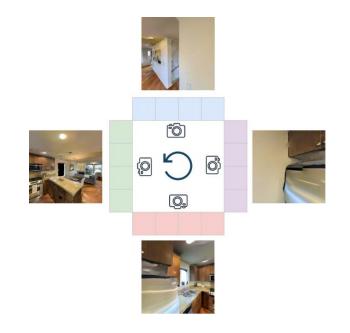
For 2: Enable E(2)–Equivariance in Message Passing



The Value Iteration operation on graph with E(2)-equivariance: *Continuous Rotations/Translations*

 $\circlearrowleft 90^\circ \circ (\mathrm{MP}(V_k)) = \circlearrowleft 90^\circ \circ Q_k$

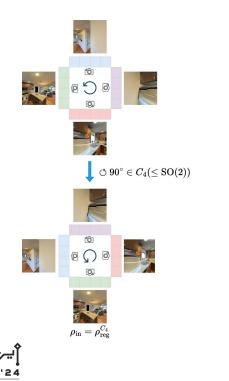
For 3: Finite camera views



One challenge in learning graph planner from *finite camera views*:

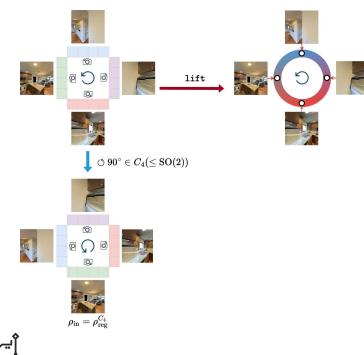
One challenge in learning graph planner from finite camera views:

The robot's camera views can't be continuously rotated with robot



One challenge in learning graph planner from finite camera views:

The robot's camera views can't be continuously rotated with robot



One challenge in learning graph planner from finite camera views:

The robot's camera views can't be continuously rotated with robot

How to obtain SO(2)-transformable feature maps?

We proposed an equivariant lifting layer

One challenge in learning graph planner from finite camera views:

The robot's camera views can't be continuously rotated with robot

How to obtain SO(2)-transformable feature maps?

We proposed an equivariant lifting layer

One challenge in learning graph planner from finite camera views:

The robot's camera views can't be continuously rotated with robot

How to obtain SO(2)-transformable feature maps?

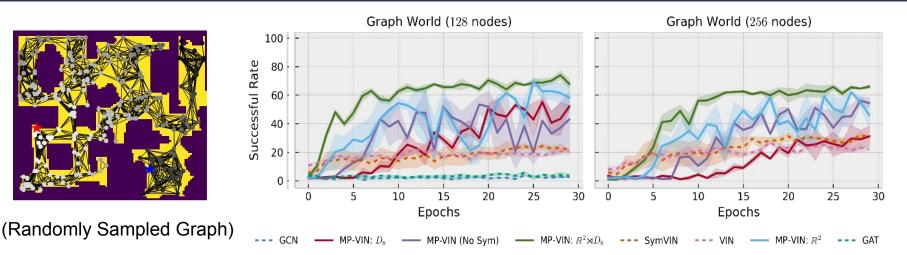
We proposed an equivariant lifting layer lift($\bigcirc 90^{\circ} \cdot \text{images}$) = $\bigcirc 90^{\circ} \cdot \text{features}$,

Experiment Setup

Example: On Habitat semantic navigation Every graph node on the 2D plane has input of 4-directional views

The node features in the graph can represent either **occupancy** or **learned semantic features** (from perception output), which are used to predict optimal actions.

Results: Planning on Graph World

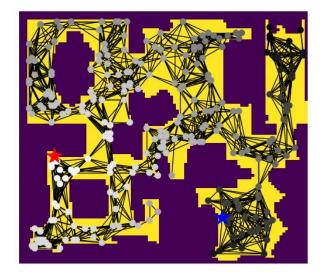


Full equivariance (**MP-VIN with translation+rotation equivariance**) improves over **graph** planners **without symmetry**, **only rotation equivariance** and **only translation**

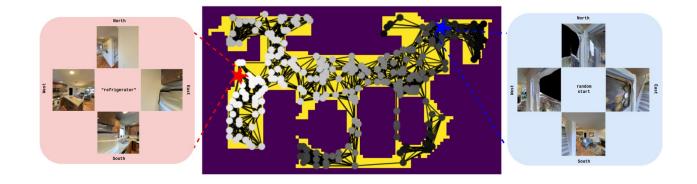
Setup: Semantic Navigation, Habitat

We experiment on a more realistic setting:

- Habitat with HM3D Dataset
- Randomly sample nodes and connect k-NN
- Egocentric RGB cameras facing four directions
- Find e.g., the "refrigerator" object



Results: Semantic Navigation



Method	Successful Rate (%)
MP-VIN (No Sym) MP-VIN: $\mathbb{R}^2 \rtimes C_4$	$\begin{array}{c} 69.70 {\scriptstyle \pm 1.07} \\ \textbf{74.27} {\scriptstyle \pm 3.12} \end{array}$

Compared with MP-VIN (without symmetry), full equivariance (MP-VIN with translation+rotation equivariance) has higher successful rate.

Summary

The proposed approach (MP-VIN)

- Utilizes **symmetry** (translation + rotation) for more **efficient** robot navigation learning.
- Requires **fewer training samples** and achieves **higher performance** with **smoother** learning curves and **faster** convergence.
- Excels in real-world-like environments, demonstrating strong **generalization** to new, unstructured environments in navigation tasks.

Thank you!

Website Link and Contact:

Linfeng Zhao* (zhao.linf@northeastern.edu)

Hongyu Li (hongyu@brown.edu)

*Linfeng Zhao is last-year PhD on market for postdocs and industry research jobs.

Outline v1

- Introduction + Motivation [2min]
 - Linfeng
- Background+Formulation: differentiable planning, from grids to graphs [5min]
 - Linfeng
- Method: E(2)-equivariant graph planning network [2-3min]
 - Linfeng+Hongyu
- Experiments: graph planning for navigation [2-3min]
 - Hongyu
- Conclusions / Summary [1min]
 - Hongyu+Linfeng
- Q&A [3min]

Outline v2

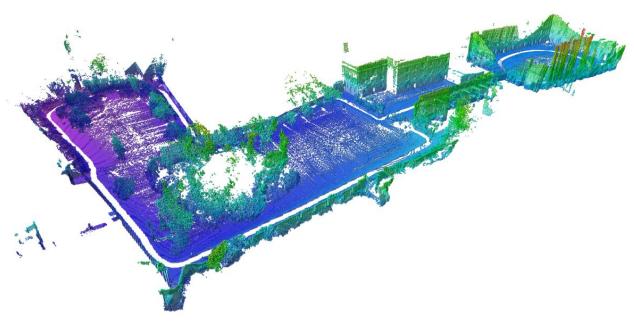
- Introduction + Motivation [1min] cut!
 - Linfeng
- Background+Formulation: differentiable planning, from grids to graphs [5-6min] expand
 - Linfeng
- Method: E(2)-equivariant graph planning network [2-3min]
 - Linfeng+Hongyu
- Experiments: graph planning for navigation [2-3min] cut!
 - Hongyu
- Conclusions / Summary [1min]
 - Hongyu+Linfeng
- Q&A [3min]

Motivation

Navigation in Complex Environments

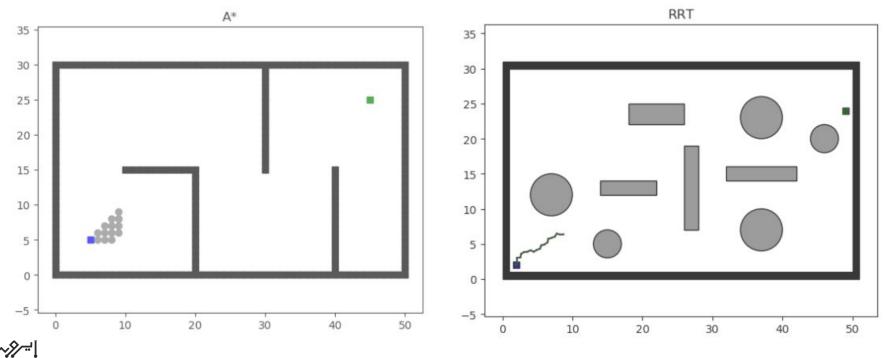
The path planning algorithms (A*, RRT, ...) produce exact solutions for navigation

They need to first build the exact representation of the world, e.g., occupancy grids



[Octomap]

Classical Planning Algorithms are Great!



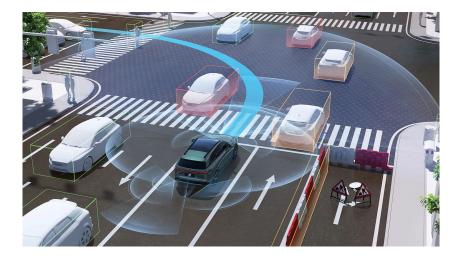
E(2)-Equivariant Graph Planning for Navigation

ABU DHAB

Challenges in Classical Planning

They rely on fully structured input, such as specific problem specification:

- The input is represented as known occupancy grids
- The transition dynamics is fully known



Benefits of Learning-based Planning

- Learning-based approaches eliminate the need for explicit intermediate representations by directly mapping observations (e.g., from cameras) to actions.
- This connection between representation learning and planning enables the system to produce actions directly, allowing for greater scalability in unstructured environments.
- Advantage: Reduces complexity by avoiding the need to construct structured representations, making it easier to handle dynamic, complex environments.
- An example: Tesla relied on the decoupled, engineered pipelines before "FSD" via fully end-to-end learning

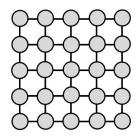
Challenges

- However: Short-horizon decision-making has been dominated by learning-based approaches
- It is still unclear that whether long-horizon tasks (such as navigation) that need long-horizon planning can be done by learning-based approaches.
- We study a specific type of planning (path planning) through learning-based solutions.

Equivariance in Learning for Planning

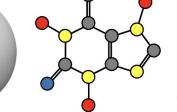
Path planning on 2D grids is steerable convolution and has discrete rotation symmetry

It can directly generalize to other geometric spaces



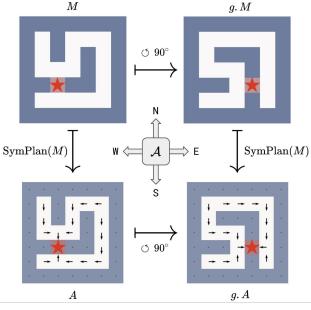
Images & Sequences

Homo s sr



Homogeneous Graphs & Sets spaces

Manifolds, Meshes & Geometric graphs



[Zhao et al. ICLR 2023]

[M. Bronstein et al., Geometric deep learning, arXiv]

$$egin{aligned} Q_t(oldsymbol{s},oldsymbol{a}) &:= R(oldsymbol{s},oldsymbol{a}) + \int_{\mathbb{R}^2} doldsymbol{s}' P(oldsymbol{s}' \mid oldsymbol{s},oldsymbol{a}) V(oldsymbol{s}'), & oldsymbol{h}'(oldsymbol{x}) &= \int_{\mathbb{R}^2} oldsymbol{K}(oldsymbol{x}' - oldsymbol{x}) oldsymbol{h}(oldsymbol{x}'), & oldsymbol{K}(oldsymbol{x}) &= \int_{\mathbb{R}^2} oldsymbol{K}(oldsymbol{x}) - oldsymbol{K}) oldsymbol{h}(oldsymbol{x}'), & oldsymbol{K}(oldsymbol{x}) &= \int_{\mathbb{R}^2} oldsymbol{K}(oldsymbol{x}) - oldsymbol{K}) oldsymbol{h}(oldsymbol{x}'), & oldsymbol{K}(oldsymbol{x}) &= \int_{\mathbb{R}^2} oldsymbol{K}(oldsymbol{x}) - oldsymbol{K}) oldsymbol{h}(oldsymbol{x}), & oldsymbol{K}(oldsymbol{x}) &= \int_{\mathbb{R}^2} oldsymbol{K}(oldsymbol{x}) - oldsymbol{K}) oldsymbol{h}(oldsymbol{x}), & oldsymbol{K}(oldsymbol{x}) &= \int_{\mathbb{R}^2} oldsymbol{K}(oldsymbol{x}) - oldsymbol{K}(oldsymbol{x}) + oldsymbol{K}) oldsymbol{x} &= \int_{\mathbb{R}^2} oldsymbol{K}(oldsymbol{x}) + oldsymbol{K}(oldsymbol{x}) + oldsymbol{K}(oldsymbol{x}) + oldsymbol{K}(oldsymbol{x}) + oldsymbol{K}) oldsymbol{h}(oldsymbol{x}) + oldsymbol{K}(oldsymbol{x}) + oldsymbol{K}(oldsymbol{x}) + oldsymbol{K}(oldsymbol{x}) + oldsymbol{K}(oldsymbol{x}) + oldsymbol{K}(oldsymbol{x}) + oldsymbol{K}(oldsymbol{x}) + oldsymbol{K}($$

Generalizing Graph Convolution to Message Passing

$$oldsymbol{m}_{ij} = extsf{propagate}_{ heta} \left(oldsymbol{h}_i, oldsymbol{h}_j, oldsymbol{x}_i, oldsymbol{x}_j
ight), \ oldsymbol{h}_i' = extsf{update}_{ heta} \left(oldsymbol{h}_i, \sum_{j \in \mathcal{N}(i)} oldsymbol{m}_{ij}
ight).$$

$$oldsymbol{m}_{ij} = extsf{propagate}_{ heta} \left(oldsymbol{h}_i, oldsymbol{h}_j, oldsymbol{x}_i - oldsymbol{x}_j
ight)$$

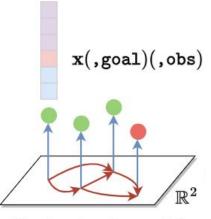
 $oldsymbol{K}(gx) =
ho_{ ext{out}} (g) \circ oldsymbol{K}(x) \circ
ho_{ ext{in}} (g)^{-1} \quad orall g \in G, x \in \mathbb{R}^2,$

How to Transform input graph and output action

TODO

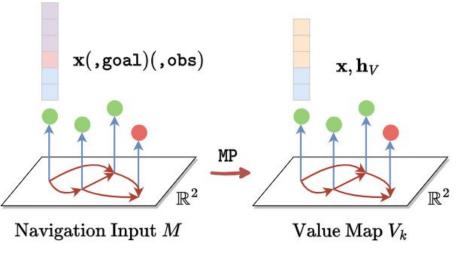
Message Passing with *Translation* Equivariance

A Message Passing Network for Planning on Graphs

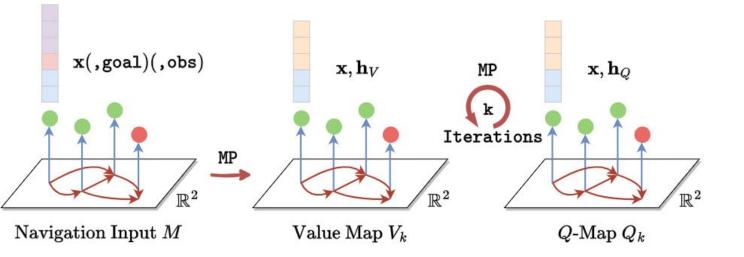


Navigation Input M

A Message Passing Network for Planning on Graphs



A Message Passing Network for Planning on Graphs



Convolution on Graphs with *Rotation* Equivariance

We generalize value iteration to graphs:

- Value iteration involves integral over next states
- 2. The integral is over the 2D plane, which can be written as a convolutional kernel
- The kernel can be proved to satisfy G-steerable kernel constraint
- 4. We construct a graph by sampling
 - finite points

E(2)-Equivariant Graph Planning for Navigation

$$egin{aligned} Q_t(oldsymbol{s},oldsymbol{a}) &:= R(oldsymbol{s},oldsymbol{a}) + \int_{\mathbb{R}^2} doldsymbol{s}' P(oldsymbol{s}' \mid oldsymbol{s},oldsymbol{a}) V(oldsymbol{s}'), \ V_{t+1}(oldsymbol{s}) &= \max_{oldsymbol{a}} Q_t(oldsymbol{s},oldsymbol{a}), \ oldsymbol{h}'(oldsymbol{x}) &= [oldsymbol{K} \star oldsymbol{h}](oldsymbol{x}) = \int_{\mathbb{R}^2} oldsymbol{K}(oldsymbol{x}' - oldsymbol{x}) oldsymbol{h}(oldsymbol{x}'), \ oldsymbol{h}'(oldsymbol{x}) &= [oldsymbol{K} \star oldsymbol{h}](oldsymbol{x}) = \int_{\mathbb{R}^2} oldsymbol{K}(oldsymbol{x}' - oldsymbol{x}) oldsymbol{h}(oldsymbol{x}'), \end{aligned}$$

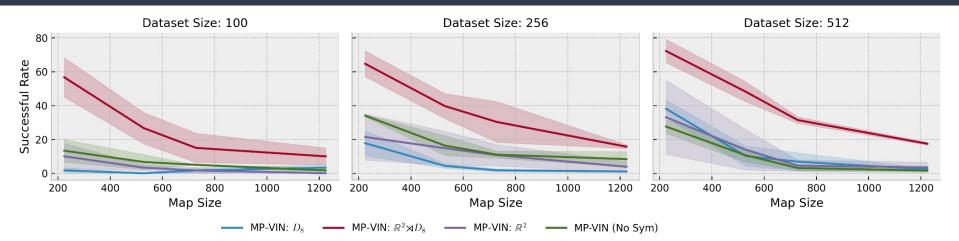
 $\boldsymbol{K}(gx) =
ho_{ ext{out}} (g) \circ \boldsymbol{K}(x) \circ
ho_{ ext{in}} (g)^{-1} \quad \forall g \in G, x \in \mathbb{R}^2,$

Experiment Design

Here we aim to answer these questions:

- Q1, Does equivariance in the graph planner (Equivariant MP-VIN) improve performance?
- Q2, How is data efficiency and generalization ability of the trained planner?
- Q3, Can the proposed graph planner handle navigation in 3D visual environments that need a perception network head?

Data Efficiency & Generalization w.r.t. Map Size



A2: With full equivariance (**MP-VIN with translation+rotation equivariance**), it generalizes better to larger maps with less training data, compared to **without symmetry**, **only rotation equivariance** and **translation equivariance**

Miniworld Experiment

