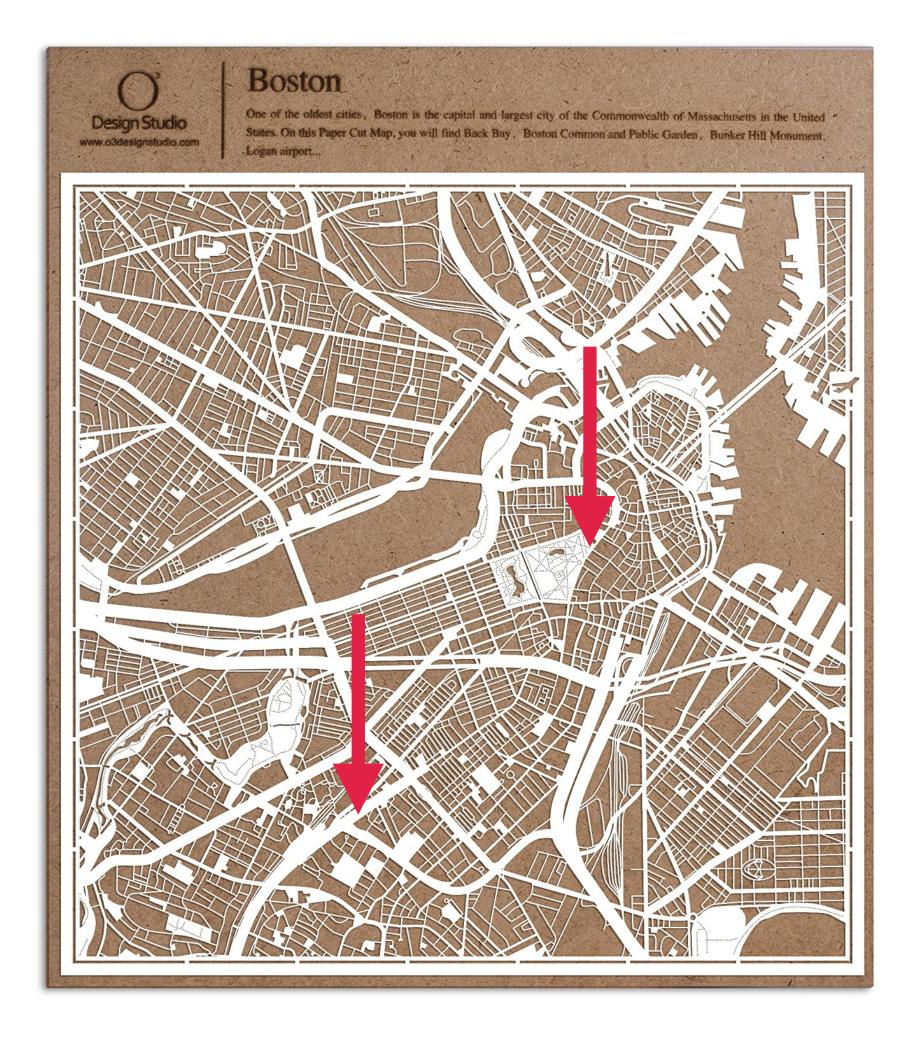
Model-based Navigation in Environments with Novel Layouts using Abstract 2-D Maps

Linfeng Zhao, Lawson L.S. Wong

NeurIPS Deep Reinforcement Learning Workshop 2020

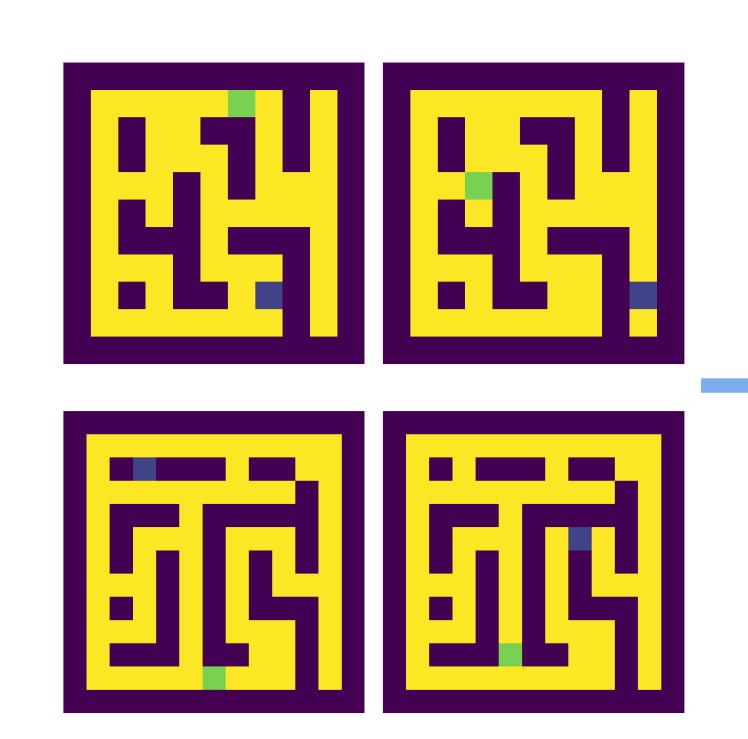
Map-based Navigation

Motivating Example



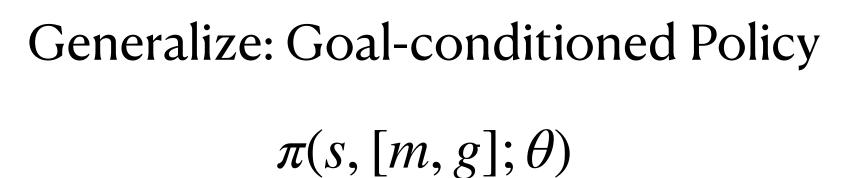
Map-based Maze Navigation

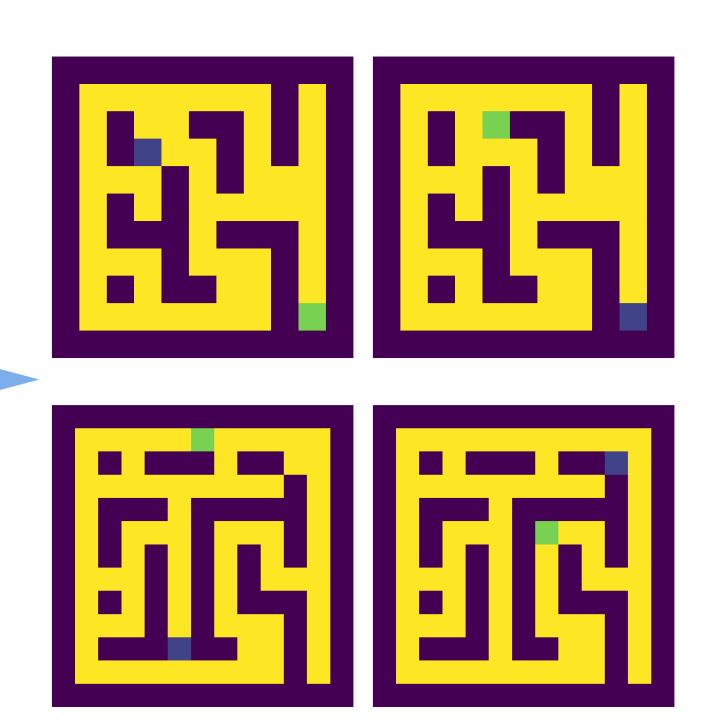
Abstract Map and Goal



Training

Learning a Planner Given State, Map and Goal Plan $\left(s,m,g,f_{\phi}\right)$

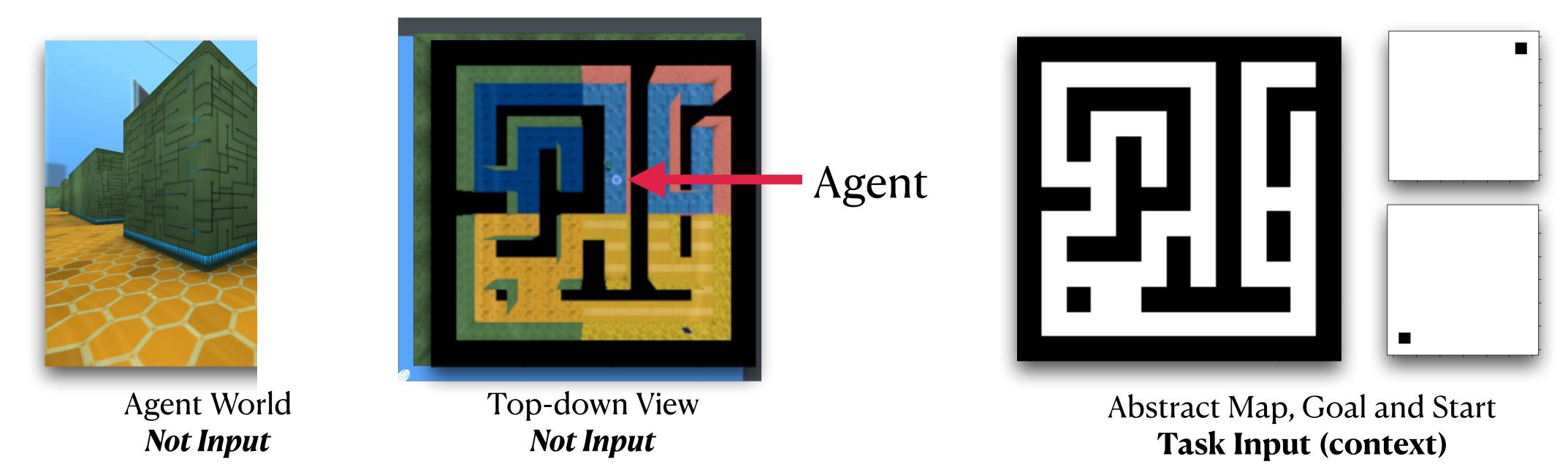




Zero-shot Navigation

Environment

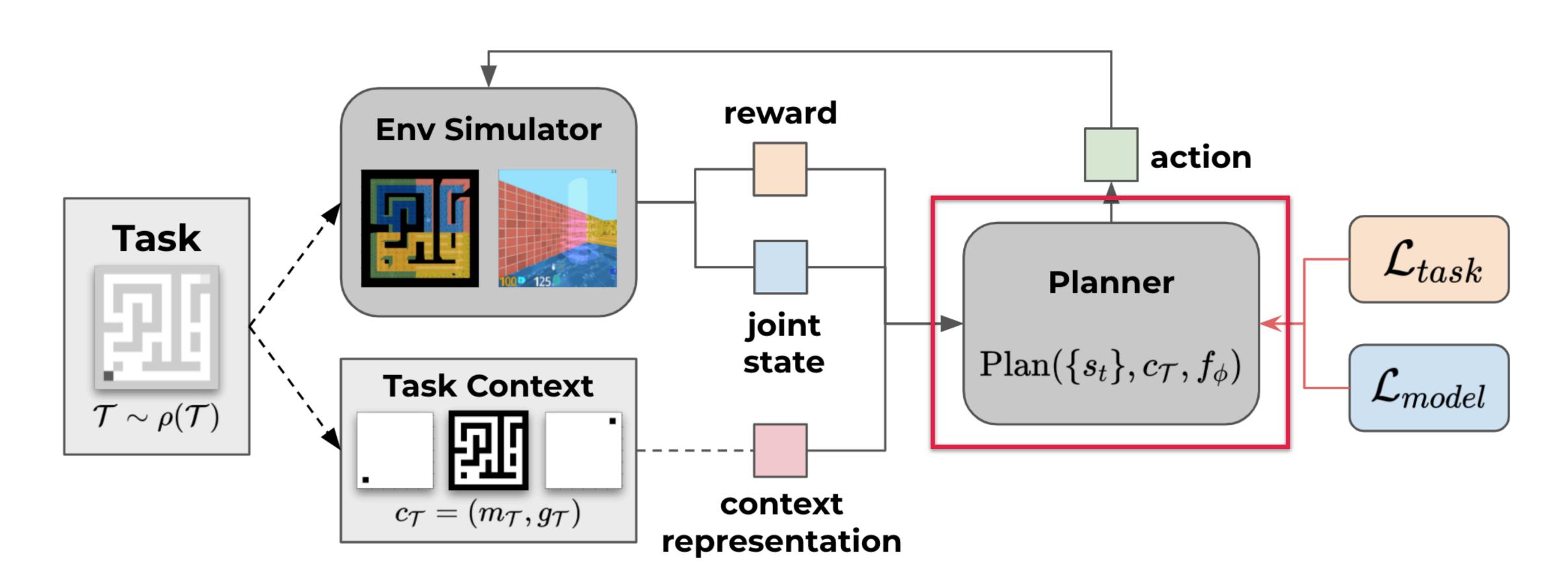
_ab



- State space = position $\mathbb{R}^3 \times$ orientation $\mathbb{R}^3 \times$ translational & rotational velocity \mathbb{R}^6
- Action space = {forward, backward, strafe left, strafe right, look left, look right}
- Reward $R_{\mathcal{G}}(s, a) = -\mathbb{I}[l(s) \neq g], g \in \mathcal{S}_{\mathcal{G}}$

Overview

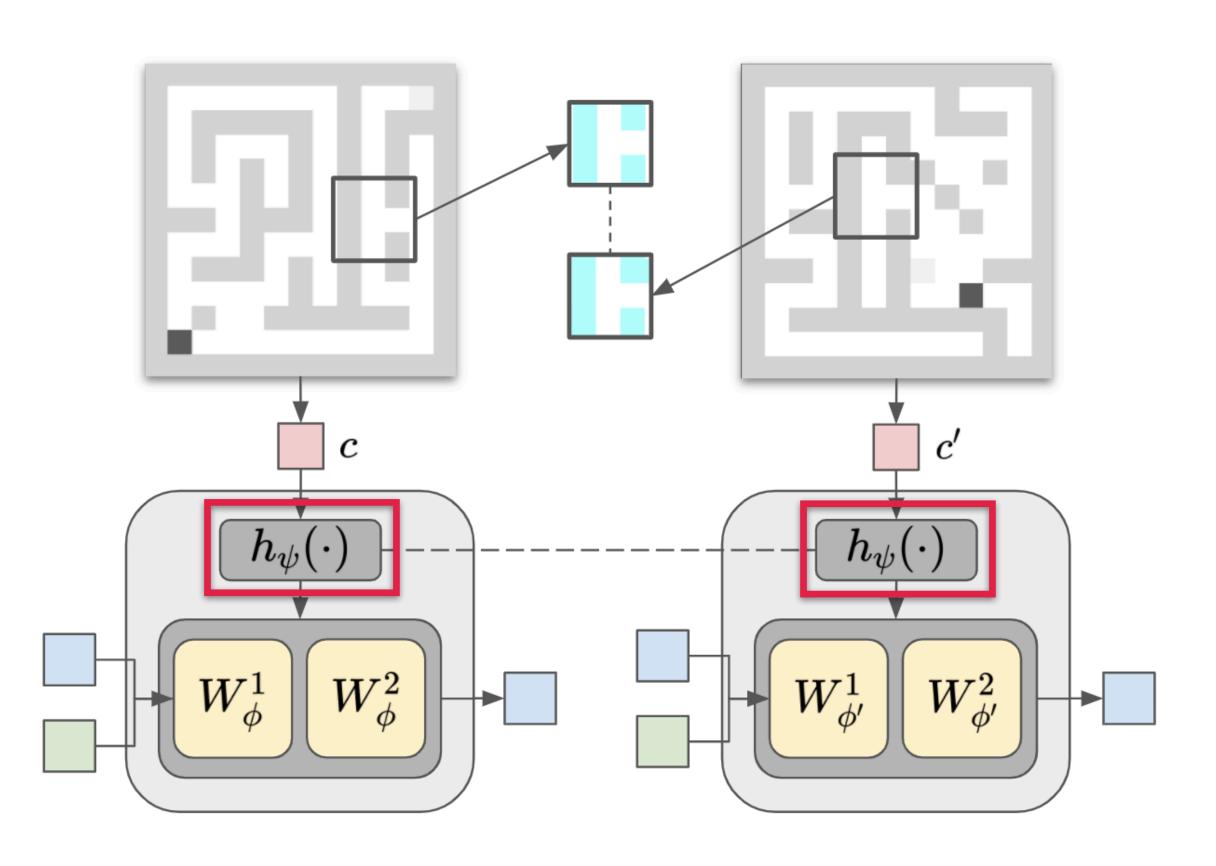
Map-conditioned Model-based Navigator



Task-conditioned Hypermodel

Forward Pass

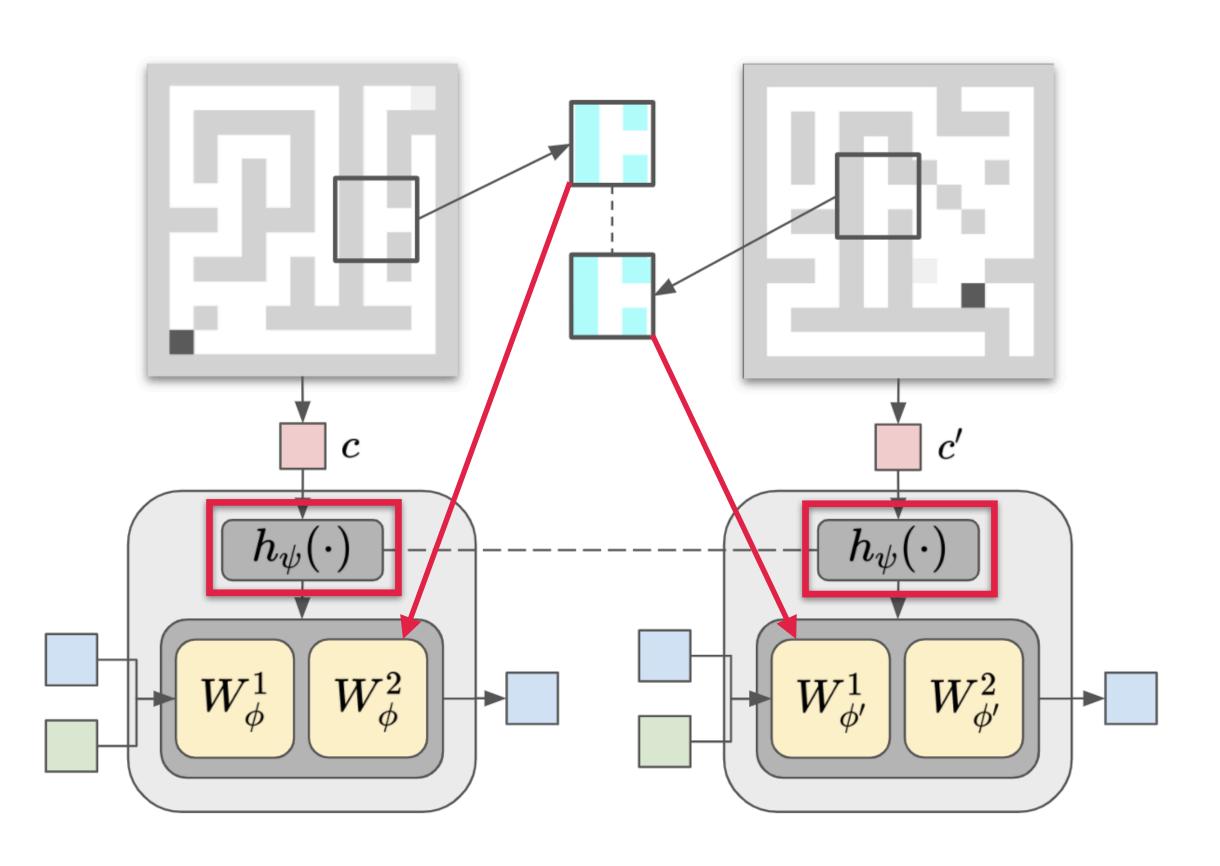
- Hypermodel $h_{\psi}: c \mapsto \phi, \quad f_{\phi}: s, a \mapsto s'$
- A hypernetwork h_{ψ} outputs weights of each transition network f_{ϕ}
 - The transition "computation" is thus shared between tasks
- *HyperNetworks* (Ha et al., 2016; von Oswald et al., 2019)



Task-conditioned Hypermodel

Forward Pass

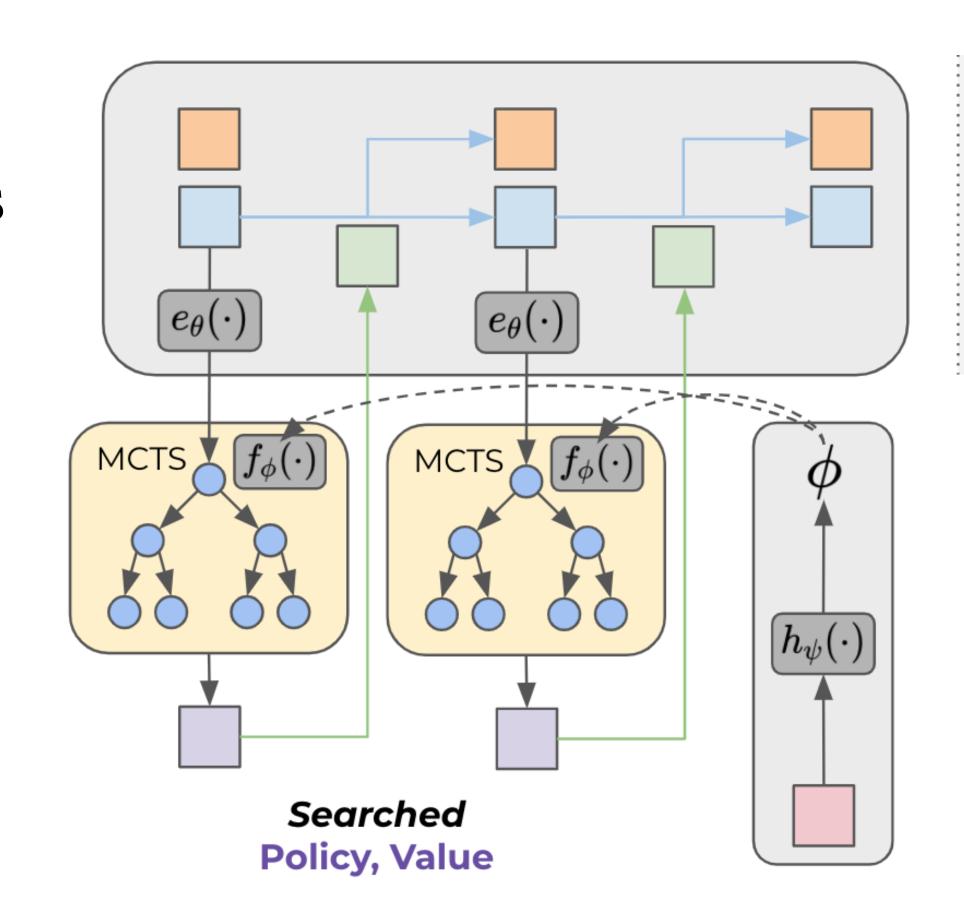
- Hypermodel $h_{\psi}: c \mapsto \phi, \quad f_{\phi}: s, a \mapsto s'$
- A hypernetwork h_{ψ} outputs weights of each transition network f_{ϕ}
 - The transition "computation" is thus shared between tasks
- *HyperNetworks* (Ha et al., 2016; von Oswald et al., 2019)



Planning using Learned Hypermodel

Forward Pass / Navigation Computation

- Planning using Monte-Carlo tree search
 - 1. Use hypermodel to predict next states
 - 2. Search policy and value using MCTS
 - 3. Take action sampled from searched policy
 - 4. Repeat, Store $\left(c_{\mathcal{T}}, \left\{s_t, a_t, r_t, s_{t+1}\right\}_t\right)$



Reward

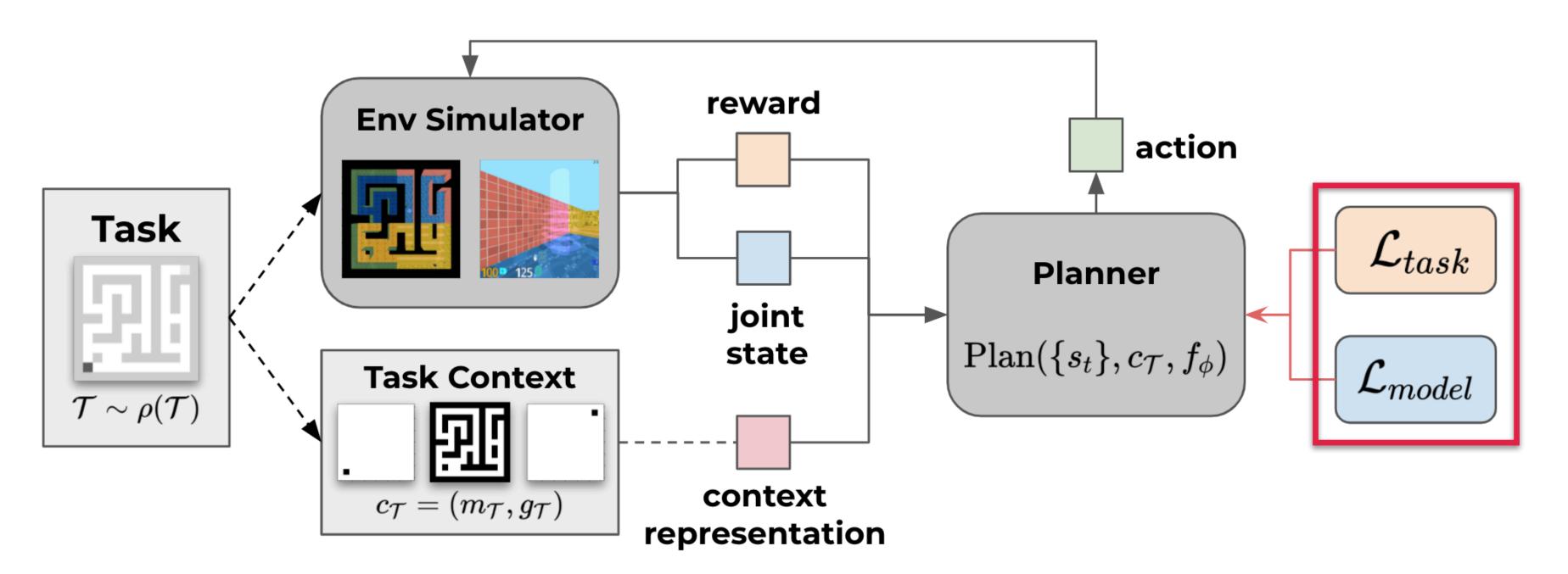
Joint State

Action

Overview

Training Objectives

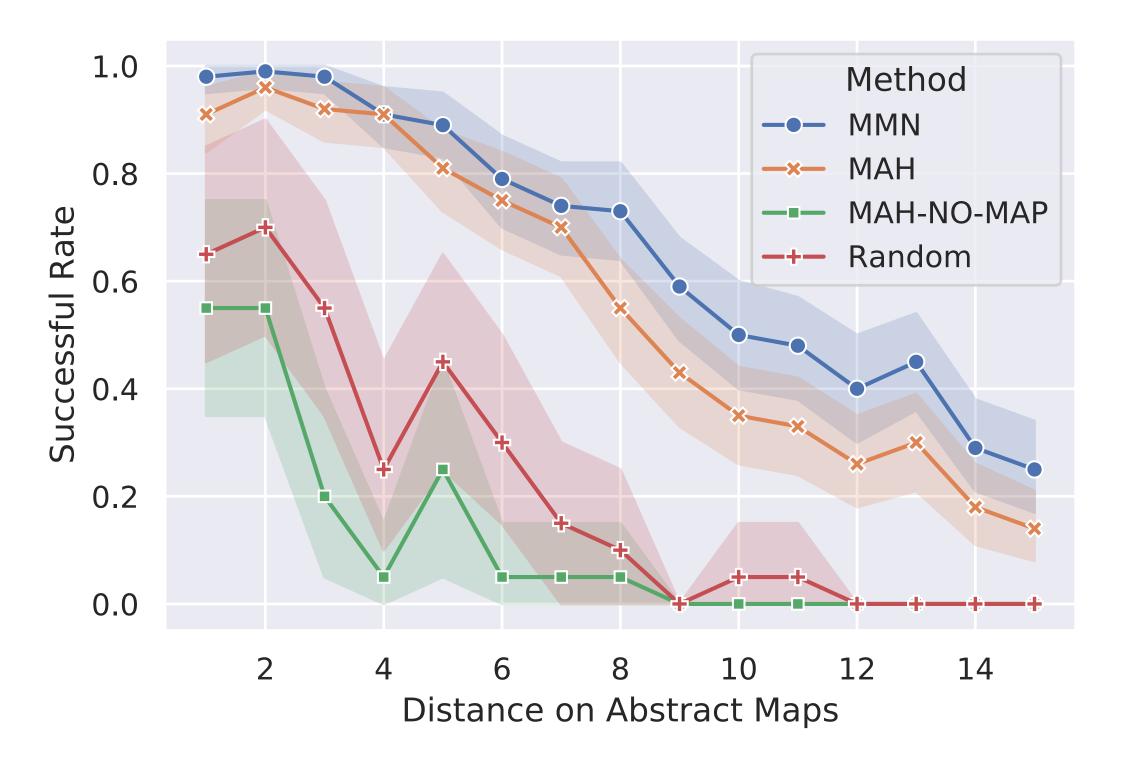
- (1) Task Loss + n-step Goal Relabelling MuZero (Schrittwieser et al., 2019), HER (Andrychowicz et al., 2017)
- (2) Auxiliary Model Loss: minimizing hypermodel prediction loss

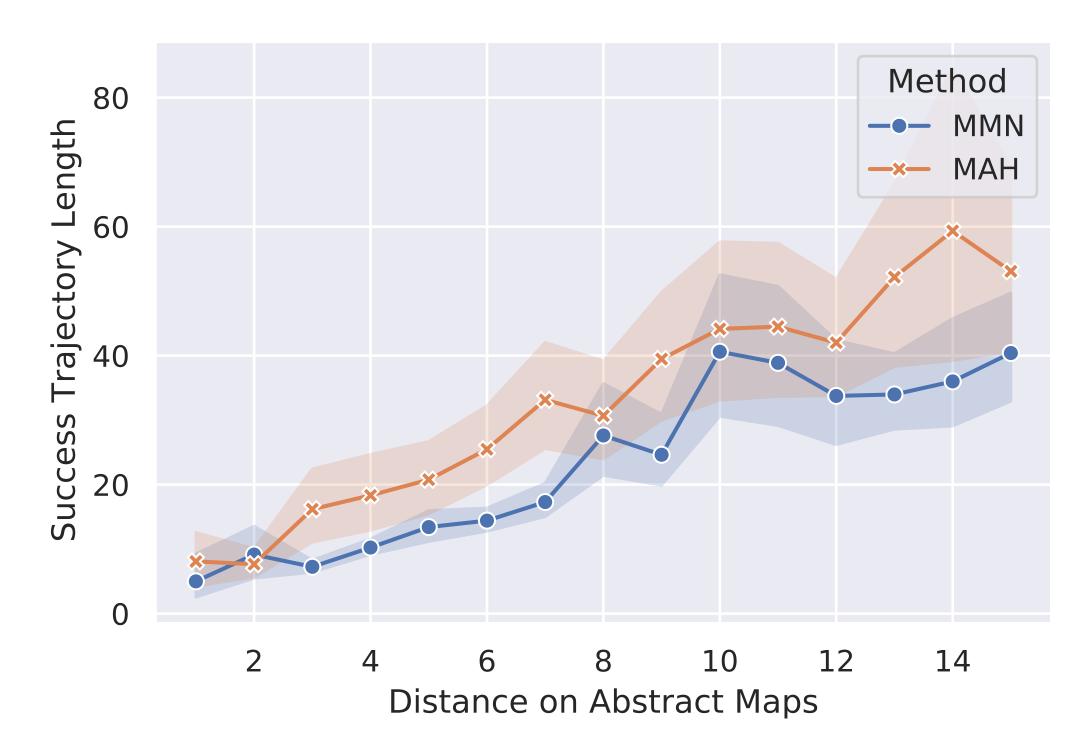


Zero-shot Navigation on Novel Maps

Key Results

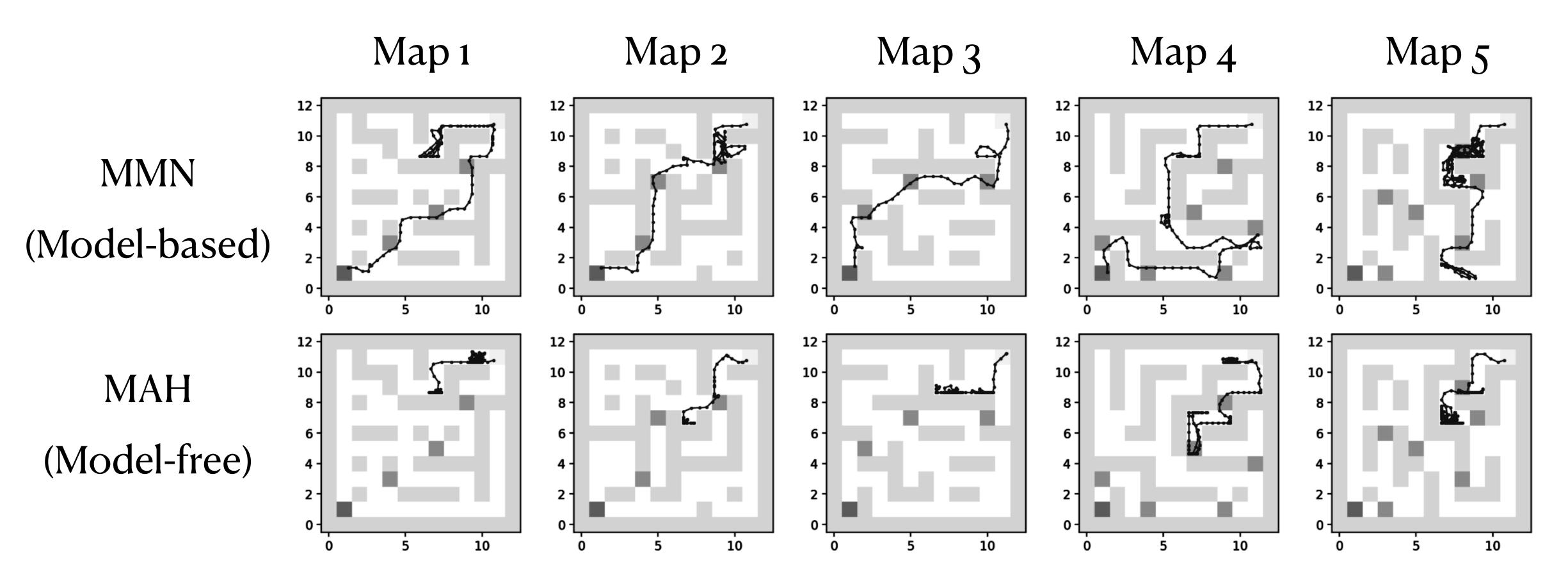
- Evaluation on 20 unseen 13×13 maps with 5 goals in distance [1,15] for each map
- MMN = Map-conditioned Model-based Navigator, MAH = Map-conditioned Ape-X DQN with HER





Zero-shot Hierarchical Navigation

Key Results



Hierarchical Navigation Task with Landmarks (from top-right to bottom-left)

Thank You