E(3) equivariance can improve efficiency of

sampling-based RL and planning.
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Overview & Geometric Properties of MDPs

Gromerte || mome ? | Q? ¥ o r:wln robotic tasks, changes in reference frames typically do not
Evcldean - : paricie | ' ~ Plamning influence the underlying physical properties of the system,
e e L e=a known as invariance of physical laws.
Continuous | Discrete | » These transformations form Euclidean group. We identify such
Lclass of MDPs as “Geometric MDP”. y

Method: Equivariance in Sampling-based Planning

__________________________

Action

fr --.i Input .
* The work generalizes previous work on symmetry in path Original .__° 20 -
planning on 2D grid [Zhao et al. ICLR’23] to continuous : '

action space and symmetry group, necessitating 50
sampling-based planning and RL. O 90°l
« We identify the conditions to achieve equivariance in g- 0

sampling-based planning: (1) invariant return function

’ Transformed
and (2) the action samples A is closed under group G. (Rotation)

i I

e The figure demonstrates equivariance in the procedure. Input . , Action
\. .,

} Theory: Linearization and Steerable Constraints
Original: s;,1 = f(s;,a;) — Linearizedatstept: s;11 =A;-s;+B;-a; §* For Geometric MDPs (with continuous group action),
o1 = A(p)-si+B(p)-as, A:Sx A—-RB¥ds  B.Sx A Risxda, § linearizing the dynamics and the group action results in a

linear state-space model but with parameterized kernels.
Vge G, Alg-p)=ps(9)Ap)ps(g™"), Blg-p)=ps(g)B@)palg™") I P ut with p 1z

i:_ The kernels satisfy G-steerable kernel constraints. y
lllustration of Steerable Kernel Constraints
™ A(—2,2) € R?*? A(2,2) € R?*2
e The illustrative examples show how dimensionality of of the A, (2V2) = K(z,2V2)
space of the matrices can be reduced. R? R+
« This demonstrates how a matrix-valued kernel A : X — [R2*2 C\ — o——
is constrained by the SO(2)-steerable kernel constraints on a x
Lset of orbits A(g - p) = pout(@A(P)pin(g™H. ) A1) e P A,(V2) = K(z,V?2)

Empirical Evaluation

» We propose an equivariant model-based RL algorithm based on TD-
MPC. We show that which components need to be equivariant.
=~ > Werun it on several tasks to demonstrate better sample efficiency.
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