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 equivariance can improve efficiency of 
sampling-based RL and planning.
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• In robotic tasks, changes in reference frames typically do not 
influence the underlying physical properties of the system, 
known as invariance of physical laws.


• These transformations form Euclidean group. We identify such 
class of MDPs as “Geometric MDP”.

Overview & Geometric Properties of MDPs

• We propose an equivariant model-based RL algorithm based on TD-
MPC. We show that which components need to be equivariant.


• We run it on several tasks to demonstrate better sample efficiency.

Empirical Evaluation

• The illustrative examples show how dimensionality of of the 
space of the matrices can be reduced.


• This demonstrates how a matrix-valued kernel  
is constrained by the SO(2)-steerable kernel constraints on a 
set of orbits . 

A : X → ℝ2×2

A(g ⋅ p) = ρout(g)A(p)ρin(g−1)

Illustration of Steerable Kernel Constraints

• The work generalizes previous work on symmetry in path 
planning on 2D grid [Zhao et al. ICLR’23] to continuous 
action space and symmetry group, necessitating 
sampling-based planning and RL.


• We identify the conditions to achieve equivariance in 
sampling-based planning: (1) invariant return function, 
and (2) the action samples  is closed under group .


• The figure demonstrates equivariance in the procedure.
𝔸 G

Method: Equivariance in Sampling-based Planning
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• For Geometric MDPs (with continuous group action), 
linearizing the dynamics and the group action results in a 
linear state-space model but with parameterized kernels.


• The kernels satisfy G-steerable kernel constraints.

Theory: Linearization and Steerable Constraints


