
Compositional 
generalization in 
end-to-end world 
modeling requires 
correctly binding 
actions to object 
slots.
We show Action 
Attention with 
Aligned Loss can 
provably achieve 
that.
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1. Motivation
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• The goal is to learn a world model 

• Question: can we generalize to 

states with novel object 
combinations?


• This is called compositional 
generalization (CG).
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2. Setup
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• We propose a setup, Object Library, and use this to study compositional generalization

• It is motivated by natural language, which uses words from vocabulary to form sentences

• Example:  objects in the object library, and  objects in each sceneN = 4 K = 2

3. Defining Compositional Generalization (CG)

• We formulate CG as replacing (permuting) an object with another one in the library, and 
name it object-replacement operation


• This naturally relates to (permutation) equivariance error, denoted as EE below
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How well can the model predict transition 
on any compositionally different scene?
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Cast Compositional Generalization 
as (Permutation) Equivariance Error EE 

in Transition Modeling T

EE(T𝕃) ≜ 𝔼 [ ̂T𝕃(s′￼ ∣ s, a) − ̂T𝕃(σ . s′￼ ∣ σ . s, σ . a) ]
1. All object replacements: 
2. All transitions 

σ ∈ ΣN
(s, a, s′￼) ∈ 𝒮𝕃 × 𝒜𝕃 × 𝒮𝕃

Expectation over:

4. Central Issue: Binding Actions to Object Slots

• To achieve efficient compositional generalization, we need to bind N objects to  slots, 
reducing complexity from  to .


• We identify that this can be implemented end-to-end and needs to happen in two places.
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1. Action Binding: 
Binding Actions to Slots

2. Slot Alignment  
Between Steps

Wrongly binding actions: 
Actions operating on incorrect objects

Wrongly aligning slots: 
Can’t minimize object representation loss
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5. Our Method: Homomorphic Object-oriented World Model

8. Visualization & Takeaways

6. Theoretical Guarantees

7. Representative Results
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• We propose Homomorphic Object-oriented World Model (HOWM) to solve this.

• It can be trained end-to-end with 2 key components: Action Attention & Aligned Loss.

EE(Tslot) = (N
K) ⋅ EE(Tlib)

EE in Slot MDP
-slotK

Theorem (informal):  
If actions correctly bind to object slots,  

the equivariance error is related by: EE in Library MDP
-objectN

Bind correctly for all scenes
Intuition: Binding = slot MDP can 
correctly simulate any scene MDP

• We formally show when it is possible to use the slot MDP to achieve compositional 
generalization: zero equivariance error, as long as actions correctly bind to object slots.
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Ours: Balanced Efficiency 
and Accuracy

• The table shows for environment called Block Pushing, 
where objects have random locations, color, shapes.


• It has  objects in each scene, and  in 
the library (in each column)

K = 5 N = 5,10,20,30

Found object identity  
through actions

(Objects unknown to 
model)

5+1 rows:
K=5 slots + 1 background

10 columns:
N=10 objects

• The visualization shows the binding matrix learned by Action Attention, purely from 
interaction  (purple triangle moves when the action operates that slot)


• In summary, our method (HOWM) uses Action Attention with Aligned Loss to solve the 
binding problem, so it can learn in the slot MDP end-to-end, and thus be more efficient.
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• The action is to move the purple 
triangle to south (while other 
objects are fixed).


• The action is a fixed interaction 
protocol. The environment and the 
model assume the same order for 
all scenes, but unknown to model.


• Our HOWM learns the order for 
step  and , thus can align then 
into a canonical order.
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