Scaling up and Stabilizing Differentiable Planning with Implicit Differentiation
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1. Motivation

Implicit differentiation
helps Differentiable
Planning algorithms
scale up in training
and stabilize in
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Issue: Forward and Backward passes are coupled together

Differentiable planning algorithms, such as Value Iteration Network (VIN),
typically need to differentiate through the forward iteration process — so the
backward gradient pass is coupled with forward iteration layers. Can we decoupled
this process? We use implicit differentiation through the fixed point directly.
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2. Implicit Differentiation

fix point of Bellman
equation.

Suppose v¥ is the fixed point, x is arbitrary input, fis a Bellman operator.

The Bellman equation provides an equality constraint and has a fixed point.
Iteratively applying Bellman operators converges to a fixed point.

We can differentiate through the fixed point equation, skipping forward layers.

e Bellman equation: v* = f(v*,z)
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« Solving backward fixed-point: ~ w’ & 2 (1— W)ﬂ wl = w0, O
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2D and Visual 2-DOF Manipulation
Maze Navigation In Workspace and C-space

We experiment on 2D path planning in 4 different navigation and manipulation
tasks. We use given 2D grid map or learned map (visual navigation and
workspace manipulation, using a mapper module).
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5. Performance: 2D Navigation Runtime

S

° Task = 15 x 15 Task = 27 x 27 Task = 49 x 49 ° Task = 15x 15 Task = 27 x 27 Task = 49 x 49
13 £
£ 200 E 200
k4 B
g100 / g 100 / /
S () e = b —_— -
30 50 80 30 50 80 30 50 80 30 50 80 30 50 80 30 50 80
#Layers Kiayer #Layers Kiayer #Layers Kiayer Forward Kpyg Forward Kpyg Forward Kpyg
o Task = 15x 15 Task = 27 x 27 Task = 49 x 49 2 Task = 15 x 15 Task = 27 x 27 Task = 49 x 49
£
£ 100 £ 100 —
ke k]
§ 50 - 2 s0 C——=
g 0 - —_—— g 0
30 50 80 30 50 80 30 50 80 30 50 80 30 50 80 30 50 80
#Layers Kiayer #Layers Kiayer #Layers Kiayer Forward Ksg Forward Kayg Forward Ky
« VIN . SymVIN « ConvGPPN e IDVIN .+ IDSymVIN ¢ ID-ConvGPPN

Algorithmic Differentiable Planners Implicit Differentiable Planners

Algorithmic differentiable planners couple forward/backward passes. They
have slow backward time and get out of memory for larger tasks/more
iterations (10GB, thus missing dots). Implicit differentiable planners have same
forward runtime but constant backward runtime and use less memory.
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3. Pipeline: Implicit Differentiable Planner

6. Performance: 2D Navigation Success Rate

http://lfzhao.com/IDPlan
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VIN with algorithmic differentiation needs to differentiate through the long
computation graph. We propose to use implicit differentiation to compute the

gradient at an estimated fixed point Vg =~ V*.
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Results on 3 sizes of 2D navigation. Algorithmic differentiable planners (ADPs)
fail to converge for too many iterations. Implicit differentiable planners (IDPs)
can successfully run and stably converge, and outperform counterparts.
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