
Presented at Deep RL Workshop, NeurIPS 2020

MODEL-BASED NAVIGATION IN ENVIRONMENTS WITH
NOVEL LAYOUTS USING ABSTRACT 2-D MAPS

Linfeng Zhao & Lawson L.S. Wong
Khoury College of Computer Sciences
Northeastern University
{zhao.linf,l.wong}@northeastern.edu

ABSTRACT

Efficiently training agents with planning capabilities has long been one of the ma-
jor challenges in decision-making. In this work, we focus on zero-shot navigation
ability on a given abstract 2-D occupancy map, like human navigation by reading
a paper map, by treating it as an image. To learn this ability, we need to efficiently
train an agent on environments with a small proportion of training maps and share
knowledge effectively across the environments. We hypothesize that model-based
navigation can better adapt agent’s behaviors to a task, since it disentangles the
variations in map layout and goal location and enables longer-term planning abil-
ity on novel locations compared to reactive policies. We propose to learn a hyper-
model that can understand patterns from a limited number of abstract maps and
goal locations, to maximize alignment between the hypermodel predictions and
real trajectories to extract information from multi-task off-policy experiences, and
to construct denser feedback for planners by n-step goal relabelling. We train our
approach on DeepMind Lab environments with layouts from different maps, and
demonstrate superior performance on zero-shot transfer to novel maps and goals.

1 INTRODUCTION

If we provide a rough solution of a problem to an agent, can the agent learn to follow the solution
effectively? In this paper, we study this question within the context of maze navigation, where an
agent is situated within a maze whose layout has never been seen before, and the agent is expected to
navigate to a goal without first training on or even exploring this novel maze. This task may appear
impossible without further guidance, but we will provide the agent with additional information: an
abstract 2-D occupancy map illustrating the rough layout of the environment, as well as indicators
of its start and goal locations (“task context” in Figure 1). This is akin to a tourist attempting to
find a landmark in a new city: without any further help, this would be very challenging; but when
equipped with a 2-D map, the tourist can easily plan a path to reach the goal without needing to
explore or train excessively.

Navigation is a fundamental capability of all embodied agents, both artificial and natural, and there-
fore has been studied under many settings. In our case, we are most concerned with zero-shot
navigation in novel environments, where the agent cannot perform further training or even explo-
ration of the new environment; all that is needed to accomplish the task is technically provided by the
abstract 2-D map. This differs from the vast set of approaches based on simultaneous localization
and mapping (SLAM) typically used in robot navigation (Thrun et al., 2005), where the agent can
explore and build an accurate but specific occupancy map of each environment prior to navigation.
Recently, navigation approaches based on deep reinforcement learning (RL) approaches have also
emerged, although they often require extensive training in the same environment (Mirowski et al.,
2017; 2018). Some deep RL approaches are even capable of navigating novel environments with
new goals or layouts without further training; however, these approaches typically learn the strategy
of efficiently exploring the new environment to understand the layout and find the goal, then exploit-
ing that knowledge for the remainder of the episode to repeatedly reach that goal quickly (Jaderberg
et al., 2017). In contrast, since the solution is essentially provided to the agent via the abstract 2-D
map, we require a more stringent version of zero-shot navigation, where it should not explore the

1

Presented at Deep RL Workshop, NeurIPS 2020

Figure 1: In each training episode, we randomly select a task T to initialize environment simulation
and feed the corresponding task context cT to the agent. We use a joint state space o ∈ R12 as input
to the agent, consisting of position R3, orientation R3, and translational and rotational velocity R6.
Each cell on the abstract map corresponds to 100 units in the agent world.

new environment; instead, we expect the agent to produce a near-optimal path in its first (and only)
approach to the goal.

Although the solution is technically accessible via the abstract 2-D map, some challenges remain
to use it effectively. First, although we assume that the layout in the 2-D map is accurate, the map
does not correspond to the state space of the agent in the environment, so the agent must learn the
correspondence between its state and locations in the 2-D map. Second, actions in the 2-D map
also cannot be directly mapped into the agent’s action space; moving betweend adjacent “cells” in
the 2-D map requires a sequence of many actions, specified in terms of the agent’s translational and
rotational velocities. Hence, one cannot simply perform graph search on the 2-D map, then execute
the abstract solution directly on the agent. Instead, we propose approaches that learn to use the
provided abstract 2-D map via end-to-end learning.

Concretely, we propose two approaches for navigation using abstract 2-D maps:

• MMN (Map-conditioned Multi-task Navigator): A model-based approach that learns a hyper-
model (Ha et al., 2016), which uses the provided 2-D map to produce a parameterized latent-space
transition function fφ for that map. This transition function fφ is jointly trained with Monte-Carlo
tree search (MCTS) to plan (in latent space) to reach the specified goal Schrittwieser et al. (2019).

• MAH (Map-conditioned Ape-X HER DQN): A model-free approach based on Ape-X Deep Q-
Networks (DQN) (Horgan et al., 2018), a high-performing distributed variant of DQN, that takes
in the provided 2-D map as additional input. Furthermore, we supplement it with our proposed
n-step modification of hindsight experience replay (HER) (Andrychowicz et al., 2017).

In experiments performed in DeepMind Lab (Beattie et al., 2016), a 3-D maze simulation environ-
ments shown in Figure 1, we show that both approaches achieve effective zero-shot navigation in
novel environment layouts, and the model-based MMN is better at long-distance navigation.

2 BACKGROUND

We consider a distribution of navigation tasks ρ(T). Each task is different in two aspects: map
layout and goal location. (1) Abstract map. The layout of each navigation task is specified by an
abstract map. Specifically, an abstract map m ∈ RN×N is a 2-D occupancy grid, where cell with
1s (black) indicate walls and 0s (white) indicate nagivable spaces. A cell does not correspond to the
agent’s world, so the agent needs to learn to localize itself given an abstract 2-D map. We generate
a set of maps and guarantee that any valid positions are reachable, i.e., there is only one connected
component in a map. (2) Goal position. Given a map, we can then specify a pair of start and goal
position. Both start and goal are represented as a “one-hot” occupancy grid g ∈ R2×N×N provided
to the agent. For simplicity, we use g to refer to both start and goal, and we denote the provided map
and start-goal positions c = (m, g) as the task context.

We formulate each navigation task as a goal-reaching Markov decision process (MDP), consisting
of a tuple 〈S,A, P,RG , ρ0, γ〉, where S is the state space, A is the action space, P is the transition

2

Presented at Deep RL Workshop, NeurIPS 2020

function P : S ×A → ∆(S), ρ0 = ρ(s0) is the initial state distribution, and γ ∈ (0, 1] is the
discount factor. We assume transitions are deterministic. For each task, the objective is to reach a
subset of state space SG ⊂ S indicated by a reward function RG : S × A → R. We denote a task
as T = 〈P,RG , ρ0〉, since a map and goal specify the dynamics and reward function of a MDP,
respectively. In the episodic goal-reaching setting, the objective is typically not discounted (γ = 1)
and the reward is −1 for all non-goal states, i.e., RG(s, a) = −I[s 6= g], g ∈ SG .

3 MAP-CONDITIONED PLANNING GIVEN ABSTRACT 2-D MAPS

To build a map-based navigation agent efficient in both training and transfer, there are several tech-
nical challenges. (1) A local change in map may introduce entirely different environment structure,
so we need the model and planner to adapt to the task context in a different way than conditioning
on state, and not directly condition on the entire task context. (2) During training, we can only rely
on a very small proportion of training tasks (e.g., 20 of 13 × 13 maps). This requires the agent
to be efficient in terms of understanding each task’s structure, i.e., the layout of training maps and
goal locations. (3) Since reward is sparse and model learning and exploration are done simultane-
ously, we need to fully utilize the knowledge in the environment to train the model and planner,
such as transition tuples and failure experiences. Corresponding to the challenges, we introduce the
task-conditioned hypermodel, followed by the planning computation by using the hypermodel in
inference. We then detail the backward pass on the training target and optimization process.

3.1 TASK-CONDITIONED HYPERMODEL

Figure 2: Applying a hypermodel hψ on
two maps. They may share local pat-
terns at some scales that can be captured
by the hypermodel.

We aim to build a model adaptive to given abstract 2-D
maps for the navigation planner. In a single-task training
schema, a naive solution is to separately learn a param-
eterized transition function fi(s, a) for different maps.
However, we want to share knowledge between tasks in
navigation domain, in which maps have some common
computational patterns. For example, in Figure 2, mov-
ing right on center of the box on the left map shares some
computation with the right one. This also applies to the
larger scale of map area and also the reward prediction.
When the agent is able to capture this type of computa-
tional pattern, it can better predict what will happen when
transferring to a new task.

We propose to build a meta network hψ , or hypermodel,
to learn the “computation” of the transition model fψ simultaneously for all maps with abstract 2-D
maps as input. The transition model for task T (map-goal pair) is a function fi that maps current
(latent) state and action to a next (latent) state. The set {fi} represents transition functions of all
tasks belonging to a navigation schema (e.g., a certain size of map), and these tasks have similar
structure. We parameterize a transition function fi as a neural network with its parameter vector φi.
We assume the set of transition networks have similar structure that can be characterized by a set
of context variables c = (m, g), i.e., the abstract 2-D map and goal.1 This implies that parameter
vectors φi live in a low-dimensional manifold. Thus, we define a mapping h : C → Φ that maps the
context of a task to the parameter vector φi of its transition function fi. We parameterize h also as a
network with parameter ψ:2

hψ : c 7→ φ, fφ : s, a 7→ s′. (1)

This can be viewed as soft weight sharing between multiple tasks. It efficiently maps low-
dimensional structure in the MDP, specified by the map, to computation of the transition model.
It may also be viewed as a structured learned “dot-product” between task context cT and state and

1Concretely, a task context c ∈ R4×N×N has four components: downsampled global occupancy map,
cropped local occupancy map, and ”one-hot” goal and start occupancy maps, where N is downsampled size.

2We only predict weights of the transition model fφ : S × A → S which operates on a latent state space.
The mapping from environment observations to latent states e : O → S is not predicted by a meta network.
Since the latent space is low-dimensional, it is feasible to predict weight matrices of a transition network for it.

3

Presented at Deep RL Workshop, NeurIPS 2020

Figure 3: We use yellow or circles to indicate predicted states or other quantities, and grey or squares
from actual interactions. (left) Applying MCTS with hypermodel to search for behavioral policy and
value, and act with a sampled action. (right) Computing targets and backpropagating from loss. The
blue line indicates n-step relabelling. We only illustrate backpropagation for one reward node for
simplicity. The solid red line is to emphasize the gradient flow from the auxiliary model loss to the
meta network’s weight ψ. The dashed red line is the gradient from task loss.

action st, at to predict the next state. The idea of predicting the weights of a main network using
another meta-network is also known as HyperNetworks (Ha et al., 2016; von Oswald et al., 2019).

3.2 PLANNING USING LEARNED HYPERMODEL

Equipped with a map-conditioned model, we use it to search actions according to the map layout
and goal location (a1, ..., ak) = Plan({si}, c, fφ). We use Monte Carlo tree search (MCTS) (Silver
et al., 2017; Schrittwieser et al., 2019) to search with learned hypermodel fφ. For multi-task, a
special benefit is that model-based planning disentangles the navigation behavior in terms of goal
level and map level, which correspond to reward function and transition dynamics, respectively.
Intuitively, the navigation computation Plan({si}, c, fφ) is highly non-linear in c = (m, g), and thus
disentangling them leads to more effective learning and generalizing across tasks.

As shown in Figure 3, we first encode the observed joint state ot into a latent space st with learned
encoder eθ(ot), as the root node of the search tree. Given a latent state and a candidate action, the
next state is predicted using hypermodel fφ. For each state (node), a prediction network gθ(st, c)
outputs the policy πt and value function vt, which are used for aligning with searched quantities in a
separate training process. After a number of simulations is done and the statistics are backpropagated
to the root node, we sample an action from the searched policy. The trajectory and the map and
goal (cT , {st, at, rt, st+1}t) are saved to a centralized replay buffer. In the training process, these
quantities are predicted on latent states and aligned to the saved quantities from actual experiences.

At zero-shot evaluation time, given an unseen abstract map, we apply planning with trained hy-
permodel: (1) given a map and goal cT = (mT , gT), at the beginning of the episode, compute the
hypermodel weights φ = h(c;ψ) by applying the meta-network on the task context cT , (2) start
MCTS simulations using the hypermodel f(s, a;φ) for latent state predictions, (3) get an action and
transit to next state, and go to step (2) and repeat. Moreover, if we assume to have a landmark oracle
on given maps, we can perform hierarchical navigation by generating a sequence of local subgoals
{(m, gi)}ni=1, and plan to sequentially achieve each intermediate landmark.

3.3 CONSTRUCTING LEARNING TARGETS WITH n-STEP GOAL RELABELLING

Jointly training a planner with learned model can suffer from lack of reward signal, especially when
the model training entirely relies on reward from multiple tasks, which is common in model-based
agents based on value gradients (Schrittwieser et al., 2019; Oh et al., 2017). Motivated by this, we
introduce a straightforward strategy to enhance the reward signal by implicitly defining a learning
curriculum, named n-step hindsight goal relabelling. This generalizes the single-step version of
Hindsight Experience Replay (HER) (Andrychowicz et al., 2017) by extending it to n-step return.

4

Presented at Deep RL Workshop, NeurIPS 2020

We adopt a multi-step strategy motivated by single-step HER, by relabelling failed goals to randomly
sampled future states (visited area) from the trajectory, and associating states with the relabelled n-
step return. Concretely, the task-conditioned bootstrapped n-step return is

GTt
.
= rt+1 + γrt+2 + γ2rt+3 + · · ·+ γnvTn ,

[
vTn , π

T
n

]
= gθ(st, cT) (2)

where vTn is the the state-value function bootstrapping n steps into the future from the search value
and conditional on task context cT . Empirically, this strategy significantly increases the efficiency
of our multi-task training by providing smoothing gradients when sampling a mini-batch of n-step
targets from successful or failed tasks. Additional details on relabelling (1) goal, (2) reward, and (3)
value are provided in the appendix A.1.

3.4 JOINT OPTIMIZATION

Our training target has two components. The first component is based on value gradients (Schrit-
twieser et al., 2019; Oh et al., 2017), where the gradient from value predictions on predicted expe-
riences is backpropagated from the aforementioned (relabelled) n-step targets. However, the value-
gradient-based method is designed for single-task RL, which can be sample inefficient in training
on different map layouts and goals. Thus, we propose an auxiliary alignment loss to regularize the
dependencies of hypermodel fφ(s, a, hψ(cT)) and “navigation computation” Plan({si}, cT , fφ) on
corresponding task context cT , to enable the hypermodel to be learned more accurately and effec-
tively in the multi-task setting. In Figure 3 (right), we maximize the mutual information between
task context cT and predicted trajectories τ̂T from the hypermodel on sampled tasks T ∼ ρ(T):

max
hψ

ET ∼ρ(T) [I(cT ; τ̂T)] , (3)

where hψ(cT) = φ is the meta network predicting the weight of transition network fφ. Observe
that: I(τ ; c) = H(τ) − H(τ |c) ≥ H(τ) + Eτ,c [log q(τ |c)], we can equivalently optimize the
RHS maxh ET [log q(τ |c)] ⇐⇒ maxh E(s,a,s′) [log q(s′|s, a;h(c))], where we omit the subscripts
for simplicity. This objective requires us to maximize the agreement of predicted states over the
expectation of both (1) sampled states and (2) multiple tasks, i.e., minimizing distances d(s′, ŝ′).

4 EXPERIMENTS

In the experiments, we assess our method and analyze its performance on DeepMind Lab (Beattie
et al., 2016) maze navigation environment. We focus on the evaluation results of zero-shot transfer
in this section. We include training and more evaluation results in Appendix B.2.

4.1 EXPERIMENTAL SETUP

We perform experiments on DeepMind Lab (Beattie et al., 2016), a reinforcement learning envi-
ronment suite supporting customizing 2-D map layout. As shown in Figure 1, we generate a set of
abstract 2-D maps, and use them to generate 3-D environments in DeepMind Lab. Each cell on the
abstract map corresponds to 100 units in the agent world. In each generated map, all valid positions
are reachable, i.e., there is only one connected component in the map. Given a sampled map, we
then generate a start-goal position within a given distance range. Throughout each task, the agent
receives the abstract map and start/goal location indicators, the joint state vector o ∈ R12 (consisting
of position R3, orientation R3, translational and rotational velocity R6), and reward signal r. The
action space is {forward, backward, strafe left, strafe right, look left, look right}, with an action
repeat of 10. This means that, at maximum forward velocity, the agent can traverse a 100 × 100
block in two steps, but typically takes longer because the agent may slow down for rotations.

Training settings. We train a set of agents on a variety of training settings, which have several
key options: (1) Map size. We mainly train on sets of 13 × 13, 15 × 15, 17 × 17, 19 × 19, 21 × 21
maps. One cell in the abstract map is equivalent to a 100× 100 block in the agent’s world. (2) Goal
distance. During training, we generate local start-goal pairs with distance between 1 and 5 in the
abstract map. (3) Map availability. For each map size, we train all agents on the same set of 20
generated maps, with different randomly sampled start-goal pairs in each episode.

5

Presented at Deep RL Workshop, NeurIPS 2020

2 4 6 8 10 12 14
Distance on Abstract Maps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
sf

ul
 R

at
e

Method
MMN
MAH
MAH-NO-MAP
Random

2 4 6 8 10 12 14
Distance on Abstract Maps

0

20

40

60

80

Su
cc

es
s T

ra
je

ct
or

y
Le

ng
th

Method
MMN
MAH

Figure 4: Zero-shot evaluation performance on 13×13 maps from distance 1 to 15. (a) Success rate
of all agents. (b) Lengths of successful trajectories of MMN and MAH.

2 4 6 8 10
Distance on Abstract Maps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

size
15
17
19
21

1 2 3 4 5 6 7 8
Distance on Abstract Maps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Mode
original
zero
flip
shuffle

Method
MMN
MAH

Figure 5: Study of performance on (a) different map sizes and (b) perturbation strategies.

Evaluation settings and metrics. We have several settings for evaluation: (1) Zero-shot transfer.
We mainly study this type of generalization, where the agent is presented with 20 unseen evaluation
maps, and has to navigate between randomly generated start-goal pairs of varying distances. (2)
Perturbation. To understand how the map input affects the performance, we evaluate agents with
input abstract maps perturbed by different strategies. (3) Goal Distance on abstract map. We focus
on two scenarios of goal distance on abstract maps: direct navigation and hierarchical navigation.
In the direct case, we evaluate on a range of distances ([1, 15]) on a set of maps, while in the
hierarchical case, we generate a set of landmarks with a fixed distance of 5 between them and
provide these to evaluated agents sequentially. (Metrics) We mainly report the average success rate
over evaluated maps, and average length of successful trajectories, with 95% confidence intervals.

Methods. We compare our model-based method, Map-conditioned Multi-task Navigator (MMN)
with model-free agents, Map-conditioned Ape-X HER DQN (MAH) and Single-task Ape-X HER
DQN (MMN-NO-MAP). MAH is based on Ape-X DQN and HER, which trains a reactive policy
also conditioned on abstract 2-D map and goal input. MMN-NO-MAP does not have task context c
as input. We also use a random agent to demonstrate a lower bound of the navigation performance.
Details of the MAH and SAH are in the appendix B.1.

4.2 ZERO-SHOT TRANSFER TO LOCAL GOALS IN NOVEL LAYOUTS

Transfer of locally trained agents. In this setting, we train all four agents on 20 13×13 maps with
randomly generated local start-goal pairs with distance [1, 5] in each episode. We train the agents
until convergence; MAH typically takes 3× more training episodes and steps (see Section B.2). We
evaluate all agents on 20 unseen 13×13 maps and generate 5 start-goal pairs for each distance from
1 to 15 on each map. The results are shown in Figure 4. MMN and MAH generally outperforms the
other two baselines. MMN has better performance especially over longer distances, both in success
rate and successful-trajectory length, even though it was only trained on distances ≤ 5. Note that
we did not include lengths for the two baseline methods due to their low success rates.

Transfer on larger maps. We also evaluated MMN on larger maps from 15× 15 to 21× 21. We
tested the zero-shot transfer performance on 20 unseen maps of corresponding sizes and generated
start-goal pairs with distance [1, 15]. As shown in Figure 5(a), even though training performance is

6

Presented at Deep RL Workshop, NeurIPS 2020

Figure 6: Trajectories from hierarchical navigation in zero-shot on 13 × 13 maps. The top-right
corner is the start, and the bottom-left is the goal. Other darker cells are generated subgoals with
distance 5. The first row is for MMN and second row is for MAH. For the first 4 tasks (columns),
MMN successfully reached the goals, while MAH failed. Both methods failed in the last task.

similar among varying sizes (not shown), zero-shot transfer on novel larger maps becomes increas-
ingly harder, which shows the difficulty of learning directly from abstract 2-D maps.

4.3 PERTURBATION OF ABSTRACT 2-D MAPS

To further study the importance of the abstract map input, during evaluation on 13 × 13 maps, we
perturb the task context input c = (m, g) and provide an disrupted version to agents. We examine
several perturbation strategies: zero, flip, shuffle, and original accurate map input. (1) In zero mode,
we give a tensor of zeros as abstract map and start/goal inputs to agents. In this case, the model may
malfunction and rely on its policy and value prediction function to provide rough estimations. (2)
In shuffle mode, we sample another map and start/goal pair within the set of evaluation maps. Thus,
the entire structure should be entirely different and may largely affect the decision. (3) In flip mode,
we randomly change the value of a cell with probability p = 80% (from wall to navigable space or
vice versa). Note that flipping only changes the map m but not the goal g, thus the agent can still
capture a rough direction in local navigation. We evaluate on distances between 1 and 8.

As shown in Figure 5(b), shuffle has the largest effect to the performance, since randomly choosing
another map not only changes the map input m′ to the agent, but also provides a misleading goal
g′. Providing a zero map/goal has the second largest performance drop, since it does not mislead the
agent with wrong map or goal, but does not provide the information that is necessary to complete
the task without further learning and exploration. This demonstrates that both MMN and MAH are
relying on the abstract map and start/goal input to do zero-shot navigation effectively. Surprisingly,
the flip strategy turns out to have little performance decay. The reason for this may be that only the
map is flipped, and since we evaluate on local start-goal pairs with distance [1, 8], the flipping may
not greatly affect the path connecting start-goal pairs, and the agent can rely on the unperturbed goal
to navigate in the correct direction for short distances.

4.4 HIERARCHICAL NAVIGATION ON NOVEL LAYOUTS

In this section, we provide an additional landmark oracle to generate sequences of subgoals between
long-distance start-goal pairs, and evaluate the performance of hierarchical navigation. We use the
agent trained 13× 13 maps, and evaluate on a set of 20 13× 13 unseen maps. On each map, we use
the top-right corner as the global start position and the bottom-left corner as the global goal position,
then plan a shortest path in the abstract 2-D map, and generate a sequence of subgoals with distance
5 between them; this typically results in 3 to 6 intermediate subgoals. Consecutive subgoal pairs
are then provided sequentially to the agent as local start-goal pairs to navigate. The navigation is
considered successful only if the agent reaches the global goal by the end.

We evaluate MMN and MAH on these 20 sequences of subgoals. We provide the next subgoal
when the current one is reached or until timeout. As shown in Table 1, our model-based MMN out-
performs the model-free counterpart by a large margin. MMN can reach 16 out of 20 global goals,
which include all 9 successful cases of MAH. We also compute the average successful-trajectory

7

Presented at Deep RL Workshop, NeurIPS 2020

Success Rate Average Success Length Average Common Success Length

MMN 16 / 20 62.25 46.44
MAH 9/20 92.55 92.55

Table 1: Zero-shot transfer results on hierarchical navigation

length and average common success length, where the latter only considers the overlapping set of
9 tasks that both approaches succeeded in. We visualize five trajectories of zero-shot hierarchical
navigation in Figure 6. The model-based MMN is more robust to the intermediate failed subgoals
by navigating to the new subgoal directly, where the model-free MAH gets stuck frequently.

5 RELATED WORK

Zero-shot navigation. Navigation is widely studied in robotics, vision, RL, and beyond; to limit
the scope, we focus on zero-shot navigation in novel environments, which is most relevant to
this work. This excludes traditional approaches based on simultaneous localization and mapping
(SLAM) (Thrun et al., 2005), since those methods need to explicitly build a map before navigation,
and the map can only be used for the corresponding environment and cannot be transferred to other
layouts. Learning-based methods such as by Mirowski et al. (2017; 2018) also require extensive
training data from the same environment; they demonstrate generalization to new goals in the en-
vironment, but not transfer to new layouts. Jaderberg et al. (2017); Chen et al. (2019); Gupta et al.
(2019); Chaplot et al. (2020) demonstrate agents that learn strategies to explore the new environment
and potentially build maps of the environment during exploration; in contrast, we are interested in
agents that do not need to explore the new environment. The approach of Gupta et al. (2019) does
not necessarily explore the new environment; instead, it learns and exploits semantic cues from its
rich visual input, which is orthogonal to our work since we use the state directly. Other domains such
as first-person-shooting games have also used agents that navigate in novel environments (Lample
& Chaplot, 2017; Dosovitskiy & Koltun, 2017; Zhong et al., 2020), but since navigation is not the
primary task in those domains, the agents may not need to actually reach the specified goal (often
none are specified). Most closely related to our work is by Brunner et al. (2018), who also use 2-D
occupancy maps as additional input and perform experiments in DeepMind Lab. Their approach is
very specific to map-based navigation, whereas our model-based approach uses more generic com-
ponents such as hypermodels and MCTS, and may be more readily generalizable to other problems.

Model-based RL and planning. Model-based RL algorithms can be roughly grouped into four
classes (Wang et al., 2019). 1. Train a transition model via supervised learning and learn on gener-
ated experience (Pong et al., 2018), or Dyna-style. 2. Follow the analytical gradient of the model
(Heess et al., 2015), which may also require certain assumptions on model’s form (Deisenroth &
Rasmussen, 2011). 3. Sampling-based planning selects a promising next action by sampling from
a certain action distribution (Hafner et al., 2018; Chua et al., 2018); this includes MCTS-based al-
gorithms (Silver et al., 2017; Schrittwieser et al., 2019; Silver & Veness, 2010; Tian et al., 2019) in
discrete-action setting. 4. Implicitly learn a model by matching value or reward predictions from un-
rolled trajectories to targets from real experience (Tamar et al., 2016; Oh et al., 2017; Schrittwieser
et al., 2019). Our method relies on types 3 and 4 above to learn an universal transition model on
multi-task environments, and is most closely related to MuZero (Schrittwieser et al., 2019), which
only predicts task-related quantities, such as rewards and values.

6 CONCLUSION

In this work, we have presented two approaches for enabling agents to navigate in environments
with novel layouts without requiring further training or exploration (zero-shot), by using provided
abstract 2-D maps and start/goal information. Both approaches MMN and MAH performed well
in zero-shot navigation in short distances; for longer distances (with access to a landmark oracle),
our model-based approach MAH performed significantly better. In future work, we will replace
this oracle with a learned subgoal generator, extend this work to handle visual observation input and
perform navigation in rich visual environments, and consider other types of provided task contexts.

8

Presented at Deep RL Workshop, NeurIPS 2020

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in neural information processing systems, pp. 5048–5058, 2017.

Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir Sadik, et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Gino Brunner, Oliver Richter, Yuyi Wang, and Roger Wattenhofer. Teaching a machine to read maps
with deep reinforcement learning. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and Ruslan Salakhutdi-
nov. Learning to explore using active neural slam. In International Conference on Learning
Representations, 2020.

Tao Chen, Saurabh Gupta, and Abhinav Gupta. Learning exploration policies for navigation. In
International Conference on Learning Representations, 2019.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. In Advances in Neural Information
Processing Systems, pp. 4754–4765, 2018.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472, 2011.

Alexey Dosovitskiy and Vladlen Koltun. Learning to act by predicting the future. In International
Conference on Learning Representations, 2017.

Saurabh Gupta, Varun Tolani, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra
Malik. Cognitive mapping and planning for visual navigation. International Journal on Computer
Vision, 2019.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. arXiv preprint arXiv:1811.04551,
2018.

Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa. Learn-
ing continuous control policies by stochastic value gradients. In Advances in Neural Information
Processing Systems, pp. 2944–2952, 2015.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt,
and David Silver. Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933,
2018.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations, 2017.

Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep reinforcement learn-
ing. In AAAI Conference on Artificial Intelligence, 2017.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Ballard, Andrea Banino,
Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al. Learning to navigate in
complex environments. In International Conference on Learning Representations, 2017.

Piotr Mirowski, Matt Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith Anderson, Denis
Teplyashin, Karen Simonyan, Andrew Zisserman, Raia Hadsell, et al. Learning to navigate in
cities without a map. In Advances in Neural Information Processing Systems, pp. 2419–2430,
2018.

9

Presented at Deep RL Workshop, NeurIPS 2020

Junhyuk Oh, Satinder Singh, and Honglak Lee. Value prediction network. In Advances in Neural
Information Processing Systems, pp. 6118–6128, 2017.

Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal difference models: Model-
free deep rl for model-based control. arXiv preprint arXiv:1802.09081, 2018.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. arXiv preprint arXiv:1911.08265, 2019.

David Silver and Joel Veness. Monte-carlo planning in large pomdps. In Advances in neural infor-
mation processing systems, pp. 2164–2172, 2010.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks.
In Advances in Neural Information Processing Systems, pp. 2154–2162, 2016.

Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. 2005.

Yuandong Tian, Jerry Ma, Qucheng Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinkerton, and
C Lawrence Zitnick. Elf opengo: An analysis and open reimplementation of alphazero. arXiv
preprint arXiv:1902.04522, 2019.

Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F Grewe. Continual
learning with hypernetworks. arXiv preprint arXiv:1906.00695, 2019.

Tingwu Wang, Xuchan Bao, Ignasi Clavera, Jerrick Hoang, Yeming Wen, Eric Langlois, Shunshi
Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba. Benchmarking model-based reinforce-
ment learning. arXiv preprint arXiv:1907.02057, 2019.

Victor Zhong, Tim Rocktäschel, and Edward Grefenstette. RTFM: Generalising to new environment
dynamics via reading. In International Conference on Learning Representations, 2020.

10

Presented at Deep RL Workshop, NeurIPS 2020

A ADDITIONAL ALGORITHM DETAILS

A.1 DETAILS OF n-STEP RELABELLING

As shown in Figure 3 (right), we sample a trajectory of experience (cT , {st, at, rt, st+1}t) on a
specific map and goal cT = (mT , gT) from the replay buffer. Observe that, if the agent does not
reach the goal area SG (a 100 × 100 cell in the agent space denoted by a coordinate gT on the
abstract 2-D map), it will only receive reward rt = −1 during the entire episode until timeout. In
large maps, this hinders the agent to learn effectively from the current map mT . Even if the agent
partially understands a map, it would rarely experiences a specific goal area on the map again.3 This
is more frequent on larger maps in which possible navigable space is larger.

We adopt a multi-step strategy motivated by single-step HER, by relabelling failed goals to randomly
sampled future states (visited area) from the trajectory. To relabel the task-conditioned bootstrapped
n-step return, there are three steps. (1) Goal. Randomly select a reached state st ∈ R12 from the
trajectories, then take the 2-D position (x, y) ∈ R2 in agent world and convert it to a 2-D goal
support grid gTS . Then, relabel the goal in task context cTS = (mT , gTS), keeping the abstracted
map and start position unchanged. (2) Reward. Recompute the rewards along the n-step segment. In
episodic case, we need to terminate the episode if the agent can reach the relabelled goal area gTS ,
by marking ”done” at the certain timestep or assigning zero discount after that step γt = 0 to mask
the remaining segment. (3) Value. Finally, we need to recompute the bootstrapping task-conditioned
value vTSn , πTSn = gθ(st, cTS). Empirically, this strategy significantly increases the efficiency of our
multi-task training by providing smoothing gradients when sampling a mini-batch of n-step targets
from successful or failed tasks. It can also be applied to other multi-task agents based on n-step
return.

A.2 JOINTLY TRAINING HYPERMODELS

In the off-policy implementation, since we need to sample a mini-batch of trajectories, we have a
batch of different contexts [c1, c2, ..., cn] during multi-task training, and need to generate a batch
of weight [φ1, φ2, ..., φn] to compute each mini-batch gradient. To efficiently implement this, it
is beneficial to use batch matrix multiplication in computing [φ1, ..., φn] = hψ([c1, ..., cn]) and
[s′1, ..., s

′
n] = f([s1, ..., sn] , [a1, ..., an] ; [s1, φ2, ..., φn]) on a batch of randomly sampled transitions

on different maps.

A.3 ADDITIONAL DETAILS OF HYPERMODELS

We assume input is M -dimensional vectors in a mini-batch of size B, i.e., input tensor is RB×M .
The main network is a MLP with hidden units Li in layer i. We denote the input as layer 0, i.e.,
Li = M . Thus, the weight matrix from layer i− 1 to layer i has size Wi ∈ RLi−1×Li . We assume
the task context is Z-dimentional and in a mini-batch of input each has a different task context
associated with it, i.e., input tensor to the hypermodel is in RB×Z . The hyperwork is also a MLP
with hidden units Ki in each layer. The last hidden layer outputs a tensor B × N , where N is the
dimension of output embedding for generating weights of the main network. The final generation
layer has multiple branches. For generating weight tensor Wi ∈ RLi−1×Li of the main network for
all task contexts, the branch outputs multi-task weight tensor B × Li−1 × Li and thus the mapping
hout : B ×N → B × Li−1 × Li has weight tensor with dimensions N × (Li−1 × Li).

A.4 ARCHITECTURE OF IMPLEMENTATION

Aiming at fair comparability of our method MAH with the model-free method MAH, we implement
them in a unified framework. Both ours (model-based) and model-free baselines have N actor
workers, a single learner, and a centralized buffer worker. Each actor worker has a copy of the
environment instance running single-threaded and take actions using either MCTS or a Q-network.

3In our extremely low data regime, the agent only has one start-goal pair on a small set of map. While on
low data regime, the agent can train on randomly sampled pairs on the maps. See the Setup for more details.

11

Presented at Deep RL Workshop, NeurIPS 2020

(a) Comparison of MMN and MAH (b) Comparison on map sizes

Figure 7: Multi-task training performance of MMN and MAH.

Figure 8: Ablation study of n-step relabelling.

B EXTRA EXPERIMENTAL RESULTS

B.1 DETAILS ABOUT COMPARED METHODS

As a focus of our work, we examine the zero-shot transfer performance and compare all four agents
in this section: MMN, MAH, SAH, and Random. In the implementation, we keep all components
of MMN and MAH the same as much as possible, except that MAH only has a map-conditioned
reactive policy network but no hypermodel. We use similar architecture for the Q-value network
Q(s, a, cT), which is also conditioned on abstract 2-D maps and goals, as the policy and value
prediction network gθ(s, cT) in our method. The task input to SAH has been further masked, so
the Q-value network is simply a single-task version Q(s, a). Thus, the main difference between
our model-based approach MMN and the multi-task model-free variant MAH is that MAH entan-
gles transfer on the map (dynamics) and goal (reward) levels, since the Q-value network needs to
generalize value prediction jointly on different latent states s, goals g, and abstract 2-D maps m.

B.2 MULTI-TASK TRAINING PERFORMANCE

We demonstrate some representative results of the training performance of MMN and MAH. First,
we compare the training on 20 of 13 × 13 maps with randomly generated goals at each episode,
which is the most widely used training setting in our transfer evaluation. In Figure 7 (a), our model-
based version MMN is much more sample efficient than the reactive MAH. There are two potential
reasons: (1) model-based method is usually more sample efficient demonstrated in many single-
task environments, and (2) our MMN is able to share knowledge between local patterns via the
hypermodel. We also show the training results on larger map sizes with local start-goal pairs [1, 5]
in Figure 7(b). Although we found the evaluation performance decreases on larger maps, the lo-
cal training performance w.r.t. episodes is similar. We include more results in the supplementary
material.

We also study the ablation of n-step relabelling in Figure 8 in a special fixed goal setting on a 13×13
map. With the relabelling, our method is able to get signal earlier and learn faster.

12

Presented at Deep RL Workshop, NeurIPS 2020

2 4 6 8 10 12 14
Distance on Abstract Maps

0.2

0.4

0.6

0.8

1.0

Su
cc

es
sf

ul
 R

at
e

Evaluation Setting
MMN-Temperature=0.1
MMN
MMN-#Simulations=30

Figure 9: Ablation study of different hyperparameters in evaluation.

B.3 ABLATION STUDIES OF TRANSFER

Ablation study on evaluation hyperparameters. We study two related hyperparameters in the
zero-shot transfer: (1) number of simulations, where we change it to 30 from 100, and (2) temper-
ature in action sampling, which is set to 0.1 from original value 0.25. We use one random goal for
distance [1, 15] on 20 of 13× 13 maps. In Figure 9, we found decreasing number of simulations and
increasing deterministicity do not produce significant difference.

Transfer with few-shot adaptation. To examine if zero-shot transfer still have any room of im-
provement, we also experiment on finetuning on same maps with different goals. Suprisingly, we
found finetuning on novel maps does not result in improved performance. However, it is understand-
able since we have fully trained the agents during multi-task training, and the amount of data and
learning steps in finetuning is insignificant compared to the training stage (about 105 vs. 103 steps,
and 105 vs. 102 trajectories). We leave the further study of few-shot adaptation with abstract maps
for future work.

13

	Introduction
	Background
	Map-conditioned Planning given Abstract 2-D Maps
	Task-conditioned Hypermodel
	Planning using Learned Hypermodel
	Constructing Learning Targets with n-step Goal Relabelling
	Joint Optimization

	Experiments
	Experimental Setup
	Zero-shot Transfer to Local Goals in Novel Layouts
	Perturbation of Abstract 2-D Maps
	Hierarchical Navigation on Novel Layouts

	Related work
	Conclusion
	Additional Algorithm Details
	Details of n-step Relabelling
	Jointly Training Hypermodels
	Additional Details of Hypermodels
	Architecture of Implementation

	Extra Experimental Results
	Details about Compared Methods
	Multi-task Training Performance
	Ablation Studies of Transfer

