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ABSTRACT
To achieve good result quality and short query response time, search
engines use specific match plans on Inverted Index to help retrieve a
small set of relevant documents from billions of web pages. A match
plan is composed of a sequence of match rules, which contain dis-
crete match rule types and continuous stopping quotas. Currently,
match plans are manually designed by experts according to their
several years’ experience, which encounters difficulty in dealing
with heterogeneous queries and varying data distribution. In this
work, we formulate the match plan generation as a Partially Ob-
servable Markov Decision Process (POMDP) with a parameterized
action space, and propose a novel reinforcement learning algorithm
Parameterized Action Soft Actor-Critic (PASAC) to effectively en-
hance the exploration in both spaces. In our scene, we also discover
a skew prioritizing issue of the original Prioritized Experience Re-
play (PER) and introduce Stratified Prioritized Experience Replay
(SPER) to address it. We are the first group to generalize this task
for all queries as a learning problem with zero prior knowledge
and successfully apply deep reinforcement learning in the real web
search environment. Our approach greatly outperforms the well-
designed production match plans by over 70% reduction of index
block accesses with the quality of documents almost unchanged,
and 9% reduction of query response time even with model infer-
ence cost. Our method also beats the baselines on some open-source
benchmarks1.

CCS CONCEPTS
• Information systems → Search engine architectures and
scalability.
1Our code is available at https://github.com/RL-matchplangeneration/Match-Plan-
Generation-in-Web-Search

∗ The authors contributed equally to this research.
† This work was primarily completed during the author’s internship at Microsoft.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3449862

KEYWORDS
Deep Reinforcement Learning, Information Retrieval, Parameter-
ized Action Soft Actor-Critic, Search Engine

ACM Reference Format:
Ziyan Luo1,2,∗,†, Linfeng Zhao1,3,∗,†, Wei Cheng1,4,∗,†, Sihao Chen1,5,†, Qi
Chen1, Hui Xue1 and Haidong Wang1, Chuanjie Liu1, Mao Yang1, Lintao
Zhang1. 2021. Match Plan Generation in Web Search with Parameterized
Action Reinforcement Learning. In Proceedings of the Web Conference 2021
(WWW ’21), April 19–23, 2021, Ljubljana, Slovenia. ACM, New York, NY,
USA, 12 pages. https://doi.org/10.1145/3442381.3449862

1 INTRODUCTION
Nowadays, most keyword-based search engines use Inverted Index
to help retrieve relevant results from billions of documents in order
to achieve sub-second response time [27]. Inverted Index maps
each keyword to a list of relevant documents (posting list), which
provides initial candidates for a query. These candidates are then
re-ranked by some ranking models and finally presented to the
users [15]. With the explosive growth of documents on the Web,
the collection of documents related to a popular keyword becomes
so large that it cannot be processed in a limited amount of time.
To further improve the search efficiency, search engines begin to
separate the documents from different fields into different posting
lists, organize these posting lists according to the document quality
and apply amatch plan to the online candidate generation procedure
in which posting lists from different keywords and different fields
are merged. Figure 1 shows the execution of a match plan.

Amatch plan is composed of a sequence ofmatch rules which are
executed one after the other. A match rule defines how the search
engine matches documents over a period of time. For example,
match 𝑁 candidates that keywords appear in document body, URL
or title fields from the beginning of the posting lists (𝑟𝑢𝑙𝑒𝐴), match
𝑀 candidates that keywords only appear in document URL or title
fields from the current scan position of the posting lists (𝑟𝑢𝑙𝑒𝐵 ),
etc. Each match rule has a discrete match rule type (e.g., 𝑟𝑢𝑙𝑒𝐴) and
several continuous stopping quotas (e.g., matched candidate count
𝑁 ). Note that different match rules have different execution costs.
In figure 1, 𝑟𝑢𝑙𝑒𝐴 is expensive since the number of candidates that
need to be checked in 𝑟𝑢𝑙𝑒𝐴 is larger than other rules. Once the

https://github.com/RL-matchplangeneration/Match-Plan-Generation-in-Web-Search
https://github.com/RL-matchplangeneration/Match-Plan-Generation-in-Web-Search
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URL Doc3 – Doc8 – Doc10 – Doc16 – Doc22 – … – DocM2
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Figure 1: An example of match plan execution. After preprocessing, multiple posting lists representing different terms and
different fields are retrieved from the inverted index in which documents are organized in the descending order of quality.
The search engine scans the posting lists by executing a match plan which is composed of a sequence of match rules. A match
rule defines how the search engine matches documents over a period of time. It is made up of a discrete match rule type (e.g.
𝑟𝑢𝑙𝑒𝐴) and several continuous stopping quotas (e.g. 𝑀𝐶𝐶 < 𝑁 , where “MCC” stands for matched candidate count). Once the
quality of the remaining documents is too low to be considered, the search engine will choose to terminate the execution of a
match plan.

quality of the remaining documents is too low to be considered, the
search engines may terminate the execution of a match plan.

Traditionally, the match plan is carefully hand-crafted by engi-
neers according to their expertise in order to make a reasonable
trade-off between result quality and response time. However, en-
gineers are still facing several challenges when doing match plan
design. Firstly, with the increasing number of match rule types
and stopping quota types, it is much more difficult for engineers
to design a good match plan that works well for most queries.
Secondly, since the data distribution of the Inverted Index varies
among different machines and over time, it is also a challenge for
engineers to design different match plans for different machines
periodically. Finally, hand-crafted static design cannot dynamically
revise the match rule based on intermediate system states because
of its open-loop nature, which is less adaptive to some corner cases.

Researchers begin to leverage learning algorithms to help with
the match plan generation. It is difficult to directly apply traditional
supervised learning algorithms to our task because the best match
plans (labels) are unknown. The previous work [20] tries to auto-
matically generate the match plan using tabular Q-learning with
discretized state space and predefined action parameters (stopping
quotas). It learns a policy for a specific query class each time and
solves it only in discretized spaces with tabular methods, which
limits its generalizability to broader queries in real search scenarios.

In this paper, we extend the match plan generation to the gen-
eral case, such that the state signals and match plans are fully
parameterized and learned from scratch without any predefined
knowledge (e.g., stopping quotas). We formulate the match plan
generation problem as a Reinforcement Learning (RL) problem.
The state consists of dynamic system runtime signals (e.g. current
matched documents) and static query features (e.g. query embed-
ding). The action space is called parameterized or discrete-continuous

hybrid, where an action has a discrete action-type and continuous
action-parameters. The reward is a function of result quality and
query response time. The formulation is similar to Parameterized
Action RL (PARL) [14], while our setting requires all actions to
share the same action-parameters. Moreover, our environment is
complex. The runtime signals we can observe are limited, which
are only an epitome of the intermediate system states. The reward
can only be obtained after the entire match plan is executed, and
only very few match plans can match desired documents, which
results in sparse reward signals.

We propose a novel deep reinforcement learning algorithm, Pa-
rameterized Action Soft Actor-Critic (PASAC), to address these chal-
lenges, which learns to act on parameterized action space environ-
ments and maximize both the expected return and the entropy in
the parameterized action space. We propose Stratified Prioritized
Experience Replay (SPER) to solve the skewed prioritizing issue of
the original PER by introducing “buffer stratifying” to optimize
all queries in different reward ranges. To handle the inherent par-
tial observability, we apply recurrent policies [9] on variable-length
match plans. We present an agent to integrate these techniques. The
agent is trained and evaluated on the production environment with
a query dataset collected from Bing2. The match plans generated
by the agent outperform the well designed production match plans,
especially in latency: our approach achieves over 70% reduction
of index block accesses on test dataset with the quality of results
almost unchanged and 9% reduction of query response time even
with model inference cost. We conduct ablation studies to validate
the effectiveness of the components. We also test on a few existing
PARL benchmarks, where our agent beats our baseline methods and
performs the state-of-the-art results in the comparable methods.

2https://www.bing.com
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Figure 2: Overview of an episode of the generation process.
Green boxes indicate quantities updated in sequentially pre-
dicting discrete-continuous actions at each (time) step,while
blue boxes are fixed in each episode. Rounded rectangles are
procedures producing corresponding quantities. (1) Given
a randomly sampled query, we collect some query statis-
tics, such as its length, and extract a query embedding. (2)
We execute the query using all previously computed actions
{𝑎1, .., 𝑎𝑡 } on an index server and take the system signals,
such as latency, as feedback to the RL agent.We concatenate
all three quantities and use them (and past observations) as
input to the agent. The agent computes a match rule type
and quota parameters and run it again on the index server
to get the next system signals, and repeat until a stop action
or server-side terminal signal. The entire action sequence
{𝑎1, .., 𝑎𝑁 } is a completematch plan.

2 BACKGROUND
2.1 Processing Procedure in Search Engine
When a user types a query in the website, the following procedure
[4] will be executed by the search engine: Firstly, the query will be
parsed and preprocessed by natural language processing techniques,
like word segmentation, stop word removal, etc. Then, the posting
list of a given query, which may contain millions of documents,
will be scanned. In this matching procedure, high-quality relevant
documents need to be recalled from a large number of candidates in
a short response time, which makes this procedure time-sensitive.
In the ranking procedure, the recalled documents will be sorted by
relevance scores. This means ranking procedure pays more attention
to the quality of results instead of latency.

In our work, we focus on the problem that efficiently recalls
candidates in matching procedure. We perform our experiments on
the production environment deployed at Bing. We briefly describe
the current baseline system in Bing and the development of match
optimization as following.

2.2 Matching Procedure Optimization in Bing
As increasingly numerous amount of documents on the Internet
are crawled, the posting list in Inverted Index becomes too long to
retrieve in a limited time. The match optimization is built on the

assumption that documents with high quality are more likely to
appear in the front of the index. It suggests us to stop early and
skip low-quality documents at the long tail of the posting list.

Engineers designed some matching policy manually and it could
effectively prune the set of candidate documents, which called
match plan. Typically, a match plan consists of a sequence of match
rules, where each match rules can be controlled by several quo-
tas. Note that different match rules have different execution costs
since some index block accesses (“IBA") are needed for checking
candidates. Usually, high-cost strategies always correspond to high-
quality results. In Figure 1, 𝑟𝑢𝑙𝑒𝐴 is expensive since the number of
candidates that need to be checked in 𝑟𝑢𝑙𝑒𝐴 is larger than other
rules. Based on that, we proposed a learning method that could au-
tomatically balance the trade-off between the quality (i.e. relevance
score graded by Bing’s production environment) and latency (i.e.
index block accesses).

In the production environment, the query is classified into one
of few predefined categories by simple statistics information (i.e.
the length of the query), and then a match plan is selected based on
hand-crafted rules. Therefore, the existing rough classification still
has great potential in optimizing the matching procedure. In our
work, we also include queries’ statistical features and query embed-
ding to identify different queries and then generate corresponding
match plans.

3 PROBLEM STATEMENT
In [20], the action-parameters are predefined for the match plan
generation, where the action space is a set of discrete match rules
(actions) and the state space is also discretized. We fully parameter-
ize a match plan to allow the agent to generate any valid plans.

3.1 Problem Formulation
We model the match plan generation problem as a discrete-time
Partially Observable Markov Decision Process (POMDP) [11], as
we assume that the runtime signals we can observe are limited,
which are far from enough to describe the complete intermediate
system state. We use a parameterized (discrete-continuous hybrid)
action space to represent any possible choices of each step.

A POMDP is given by a tuple (S,A,T ,R,Ω,O, 𝛾), and the under-
lying Markov Decision Process (MDP) is defined by (S,A,T ,R, 𝛾),
where S is the state space,A the parameterized action space, T the
transition function T : S × S × A → R+, and R : S × A → R is
the reward function. The set of observations is given by Ω and the
the observation function mapping underlying states to probability
distributions over observations is given by O. The agent interacts
with an environment to maximize the cumulative reward with a
discount factor 𝛾 ∈ [0, 1).

In previous Parameterized Action RLworks like [2, 14], the action
space is denoted as:

A =
⋃
𝑘∈A𝑑

{(𝑘, 𝑥𝑘 ) |𝑥𝑘 ∈ X𝑘 } ,

where each discrete action 𝑎 ∈ A𝑑 = [𝐾] = {𝑘1, ..., 𝑘𝐾 } has a cor-
responding continuous action-parameter space X𝑎 . We introduce
a slightly different formulation according to the nature of match
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plan generation:

A = {(𝑘, 𝑥) |𝑘 ∈ A𝑑 , 𝑥 ∈ X} = A𝑑 × X,

where the discrete action space (for match rules) A𝑑 share the
action-parameter space X ∈ R𝑁 , i.e. the continuous action space
(for quotas). Such formulation results in a disentangled action space
between discrete and continuous actions which a class of parame-
terized action (P-DQN [26] and MP-DQN [2]) may not be trivially
applied. We have a large action space and such formulation is over-
complicated, making the agent impossible to converge. Thus, ours
only contains a discrete action space and a shared parameter space.

Parameterized v.s discretized action space. An alternative way
of dealing with our problem is to discretize the aforementioned
continuous action space. We use the parameterized action space
instead of the discretized one, mainly due to the following mo-
tivations: 1) Controlling with coarse-grained quotas can lead to
imprecise control. Conversely, the action space is too large, making
the models hard to converge. It is difficult to balance the two issues;
2) Generating discretized quotas cannot utilize the prior knowledge
of numerical ordering. Besides, in Section 5, experiments show
that using the parameterized action space performs better than the
discretized one.

Environment. The environment communicates with Bing’s index
servers to send action sequences and receive states and rewards.
At the beginning of an episode, a query is randomly chosen, and
the goal is to find an optimal match plan in terms of the reward.
For every step, the agent generates a match rule and sent it to the
index. After execution, the index returns the state signals to the
agent. Note that, the environment only contains one shred of Bing’s
index, which is the epitome of the whole index. Because the index
is evenly distributed in different machines, we assume that if we
achieve optimal performance at one machine, the whole cluster of
machines would be also in the optimal settings. We also test our
algorithm and models on other shreds of the index, and the results
remain nearly unchanged.

3.2 Environment Modeling
The interactions between the agent and the environment are de-
picted in Figure 2. The key components of the POMDP are as fol-
lows:
• State. At each time step, the agent receives a state with the time-
step dependent features and the time-step independent features.
As shown in Figure 2, the time-step dependent part contains se-
lected run-time system signals (e.g. the index position, matched
document count, IBA, matched document quality, etc.) from the
Inverted Index system. The time-step independent part includes
some statistical features and semantic embedding of queries to
allow the agent to identify different queries. Such statistical fea-
tures are used in the current production system, such as length
and popularity of a query. Details about state features are in-
cluded in Appendix.
• Action. The agent selects a parameterized action 𝑎𝑡 including
a match rule type and the allocated quotas at each step. There
are 29 types of match rules in A𝑑 and also a parameter space
of quotas X for each match rule. All outputted quotas are only

effective for the current step. There is also a special action to
note: stop (by agent). The environment may terminate and return
terminal signal, but it only happens in extreme cases, such as
query latency is too long which exceeds the budget. To allow a
better balance of latency and performance, we allow the agent
to choose stop or not as another type of discrete action, which
is additional to the other 29 match rules.
• Reward. We use two criteria in the reward: latency and quality.
For latency consideration, since execution time is noisy because
of caching, we use index block accesses ("IBA") which is a constant
in different external circumstances. The performance is indicated
by relevance scores ("RS") of top 𝐾 returned documents weighted
by the decreasing weights which are graded by the ranker model
built by Bing’s engineers. RS is trained to be an approximation
of NDCG[20]. Our match plan generation models training lies
on one machine. However, there are few (e.g. zero/one) labeled
documents for each query on one machine. The labeled query
set is too small to train models. Therefore, instead of NDCG, we
use RS to indicate the relevance, since RS has a more smooth
and continuous value space than NDCG and is stabler and easier
for models to learn.
The reward 𝑟𝑡 is calculated by IBA and RS:

𝑟𝑡 = (𝜆1RS𝑡 − 𝜆2IBA𝑡 ) − (𝜆1RS𝑡−1 − 𝜆2IBA𝑡−1), (1)

where 𝜆1,2 the weight for two evaluation metrics, which are used
to make a trade-off between relevance and efficiency. Specifically,
the initial values RS0 and IBA0 are all zeros.

4 METHOD
It is a challenging task to use RL for match plan generation in search
engines. Firstly, the action space in our environment contains both
discrete and continuous actions, while most reinforcement learning
algorithms focus on problems that the action space is either discrete
or continuous. Secondly, the environment of the search engine is
complex in terms of heterogeneous query representation and states.
In our scene, queries are heterogeneous which needs a high dimen-
sion representation; many intermediate signals used in our states
have a large and continuous value range as well. Finally, sparse
reward is also challenging for training to converge [1]. Especially,
at the beginning of the training stage, positive rewards are rare
because of insufficient training of the policies.

4.1 Parameterized Action Soft Actor-Critic
Soft Actor-Critic (SAC) [6] is a state-of-the-art control RL algo-
rithm that has proven its sample efficiency and learning stability
as well as hyper-parameter robustness. However, SAC is only is
well studied on continuous action and can be adopted to discrete
action. Therefore, PASAC is proposed for the parameterized action
space. The pseudocode of PASAC is included in Algorithm 1 and
networks architecture in Appendix.

Maximum entropy in parameterized action policy. PASAC opti-
mizes stochastic policies in an off-policy way and optimizes policies
that maximize both the expected future return and the maximum
entropy objectives:

𝐽 (𝜋) =
∑
𝑡

E(𝑠𝑡 ,𝑥𝑡 ,𝑘𝑡 )∼𝜏𝜋
[
𝛾𝑡 (𝑟 (𝑠𝑡 , 𝑥𝑡 , 𝑘𝑡 )) + 𝛼H (𝜋 (·|𝑠𝑡 ))

]
(2)
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where 𝜋 is a policy,𝑇 is the number of time steps, 𝑟 is the reward
function, 𝛾 ∈ [0, 1] is the discount rate, 𝑠𝑡 ∈ S is the state at time
step 𝑡 , 𝑎𝑡 ∈ A is the action at time step 𝑡 , 𝜏 is the distribution of
trajectories induced by policy 𝜋 , 𝛼 is the temperature parameter
which determines the relative importance of the entropy term ver-
sus the reward, and thus controls the stochasticity of the optimal
policy. HereH(𝜋 (·|𝑠𝑡 )) is the entropy of the policy 𝜋 at state 𝑠𝑡 .

Architecture of PASAC. Original SAC contains a critic network
to evaluate the Q value of continuous action and an actor network
to estimate a mean and variance of a Gaussian distribution for the
continuous actions. In PASAC, there are discrete and continuous
actor branches (network), and they are used to generate discrete and
continuous actions at the same time. These two actor networks have
parameters that are not exactly the same, and share the first few
layers to encode the state information. PASAC contains one critic
network for estimating Q values of both discrete and continuous
actions. The architecture of PASAC is shown in Figure 2.

Policy network with parameterized action space. To generate the
discrete actions, the discrete actor network estimates a categorical
policy 𝜋𝜙 for all discrete actions, and the discrete action to execute is
sampled from the categorical distribution 𝜋𝜙 (𝑘 |𝑠) [23]. Continuous
action is sampled from a Gaussian distribution generated by the
mean and variance outputted by the continuous actor network (as
SAC typically does). The continuous actor network generates the
stochastic policy 𝜋𝜓 for continuous actions by outputting the mean
and variance of a Gaussian distribution for each of the parameters.
They are updated separately bymaximizing their respective entropy
objective. The objective for the discrete policy 𝜋𝜙 is given by:

𝐽𝜋 (𝜙) = E𝑠𝑡∼𝐷
[
E𝑘𝑡∼𝜋𝜙

[
𝛼𝑑 log

(
𝜋𝜙 (𝑘𝑡 |𝑠𝑡 )

)
−𝑄𝜃 (𝑠𝑡 , 𝑘𝑡 , 𝑥𝑡 )

] ]
(3)

and similarly the objective for the continuous policy 𝜋𝜓 is:

𝐽𝜋 (𝜓 ) = E𝑠𝑡∼𝐷
[
E𝑥𝑡∼𝜋𝜓

[
𝛼𝑐 log

(
𝜋𝜓 (𝑥𝑡 |𝑠𝑡 )

)
−𝑄𝜃 (𝑠𝑡 , 𝑘𝑡 , 𝑥𝑡 )

] ]
(4)

where D denotes experience replay and 𝜃 denotes parameters of the
joint soft Q network, 𝜙 and𝜓 denote the parameters of discrete and
continuous actor networks, 𝛼𝑑 is discrete temperature parameters
of entropy of discrete policy, and 𝛼𝑐 is continuous temperature
parameters of entropy of continuous policy.

Soft Q network. Each complete action composes of both discrete
and continuous parts 𝑎𝑡 = (𝑘𝑡 , 𝑥𝑡 ). Therefore, in PASAC, the critic
network estimates the joint soft Q function 𝑄𝜃 (𝑠𝑡 , 𝑘𝑡 , 𝑥𝑡 ), where
𝜃 is the parameters of critic network. This strategy keeps the dis-
crete and continuous actions of the output of two different actors
relevant. The discrete actor network outputs categorical probabili-
ties as the representation [𝑓 (𝑘1

𝑡 ),𝑓 (𝑘2
𝑡 ),..., 𝑓 (𝑘𝑛𝑡 )] for 𝑛 dimension

discrete actions, where 𝑓 (·) is the 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function. The joint soft
Q function takes the continuous action 𝑥𝑡 and the representation
vector [𝑓 (𝑘1

𝑡 ),𝑓 (𝑘2
𝑡 ),..., 𝑓 (𝑘𝑛𝑡 )] as input. This Q function estimates

a joint Q value of discrete and continuous action instead of a Q
values for only continuous actions, which is different from P-DQN.
It can be trained to minimize the soft Bellman residual:

𝐽𝑄 (𝜃 ) = E(𝑠𝑡 ,𝑥𝑡 ,𝑘𝑡 )∼𝐷
[

1
2

(
𝑄𝑡
𝜃
(𝑠𝑡 , 𝑥𝑡 , 𝑘𝑡 ) − 𝑦𝑡

)2
]
, (5)

where the target 𝑦𝑡 is

𝑦𝑡 = 𝑟𝑡 + 𝛾
(
𝑄𝑡+1
𝜃
(𝑠𝑡+1, 𝑥𝑡+1, 𝑘𝑡+1) − ℎ𝑡

)
, (6)

and the terms from maximum entropy

ℎ𝑡 = 𝛼𝑑 log𝜋𝜙 (𝑘𝑡+1 |𝑠𝑡+1) + 𝛼𝑐 log𝜋𝜓 (𝑥𝑡+1 |𝑠𝑡+1) , (7)

where 𝜃 denotes parameters of the target joint soft Q network.

Double alpha tuning. [7] use an alpha loss to adjust tempera-
ture of entropy automatically. This method enables the policy to
explore adaptively during the training and across environments.
Inspired by SAC, we propose two alpha loss to adjust the tempera-
tures of discrete and continuous policies’ entropy respectively. This
method allows independent exploration of discrete and continuous
policies. Furthermore, it provides a more efficient and balanced
exploration strategy. To train the temperature parameters 𝛼𝑑 and
𝛼𝑐 , the gradient descent is applied to the following objectives:

𝐽 (𝛼𝑑 ) = E𝑘𝑡∼𝜋𝑡
𝜙

[
−𝛼𝑑

(
log

(
𝜋𝜙 (𝑘𝑡 |𝑠𝑡 )

)
+ H̄𝑑

)]
(8)

𝐽 (𝛼𝑐 ) = E𝑥𝑡∼𝜋𝑡
𝜓

[
−𝛼𝑐

(
log

(
𝜋𝜓 (𝑥𝑡 |𝑠𝑡 )

)
+ H̄𝑐

)]
(9)

where H̄𝑑 is the target entropy of the discrete policy, H̄𝑐 is the
target entropy of the continuous policy.

Recurrent state head. To apply PASAC to the match plan genera-
tion task, we apply recurrent neural networks to handle the partial
observability in our setting [9], since we empirically find that the
system signals cannot provide sufficient information of next state.
The training of RNN parameters uses backpropagation through
time (BPTT) for entire trajectories.
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Algorithm 1 Parameterized Action Soft Actor-Critic
input: Initial parameters 𝜃1, 𝜃2, 𝜙 ,𝜓
⋄ Initialize target networks’ weights 𝜃1← 𝜃1, 𝜃2← 𝜃2
⋄ Initialize an experience replay buffer D ← ∅
for each episode do

for each environment step do
⋄ Sample a discrete action 𝑘𝑡∼𝜋𝜙 (𝑘𝑡 |𝑠𝑡 )
⋄ Sample parameters 𝑥𝑡∼𝜋𝜓 (𝑥𝑡 |𝑠𝑡 )
⋄ Store the transition D ← D ∪ (𝑠𝑡 , 𝑓 (𝑘𝑡 ), 𝑥𝑡 , 𝑟𝑡 , 𝑠𝑡+1)

end for
for each gradient step do
⋄ Sample a mini-batch from replay buffer D
⋄ Update the joint soft Q-function parameters
𝜃𝑖 ← 𝜃𝑖 − 𝜆𝑄∇𝜃𝑖 𝐽𝑄 (𝜃𝑖 ) for i ∈ [1, 2]
⋄ Update discrete policy weights
𝜙 ← 𝜙 − 𝜆𝜋𝜙∇𝜙 𝐽𝜋 (𝜙)
⋄ Update continuous policy weights
𝜓 ← 𝜓 − 𝜆𝜋𝜓 ∇𝜓 𝐽𝜋 (𝜓 )
⋄ Adjust temperature of discrete policy’s entropy
𝛼𝑑 ← 𝛼𝑑 − 𝜆𝛼𝑑∇𝛼𝑑 𝐽 (𝛼𝑑 )
⋄ Adjust temperature of continuous policy’s entropy
𝛼𝑐 ← 𝛼𝑐 − 𝜆𝛼𝑐∇𝛼𝑐 𝐽 (𝛼𝑐 )
⋄ Update target networks’ weights
𝜃𝑖 ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃𝑖 for i ∈ [1, 2]

end for
end for

output: Optimized parameters 𝜃1, 𝜃2, 𝜙 ,𝜓

4.2 Stratified Prioritized Experience Replay
In the off-policy RL algorithms, experiences (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) are
stored in a replay memory, and the agent samples a mini-batch
from the memory uniformly instead of using the current expe-
rience for training. Recently, many off-policy RL algorithms use
Prioritized Experience Replay [21] (PER) and achieve better results
than ordinary experience replay. In PER, the sampling from a replay
memory can be prioritized with a probability 𝑝𝑖 proportional to
TD-errors to increase the sample efficiency.

Skewed prioritizing. In our complex environment, we discover
a skewed prioritizing property of PER that: the highly prioritized
samples often center on a small range of the reward space, as shown
in Figure 4. In such a condition, the experiences whose rewards are
in certain ranges are more likely to be sampled, which makes the
agent behave poorly in some state subspaces. Specifically, in our
settings, it causes insufficient training on some corner queries. In
order to alleviate the skewed prioritizing issue, we propose Stratified
Prioritized Experience Replay (SPER) to replace the original PER.

Buffer stratifying. The replay buffer is divided into several bins
(strata) of the same capacity. Each bin stores transitions within a
certain range of the reward space. When sampling from SPER, the
same number of transitions are fetched from each bin by prioritized
sampling. Each bin can be regarded as a PER and the sampling
procedure in each bin is the same as in PER [21].

Priority with TD-error and policy loss. In SAC, policy loss is the
Kullback-Leibler divergence of the policy and the scaled exponential
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Figure 4: Scatter plot of distributions of query samples’ pri-
ority in the original PER at episode 1000 and 10000.

soft Q function [6] implying the potential improvement of the
policy. Inspired by this, we adapt prioritized sampling to PASAC
by modifying the priority to:

𝑝 (𝑠𝑡 , 𝑎𝑡 ) = |𝛿 (𝑠𝑡 , 𝑎𝑡 ) | + 𝜆𝜉 (𝑠𝑡 , 𝑎𝑡 ) + 𝜖𝑑 , (10)

where 𝛿 (𝑠𝑡 , 𝑎𝑡 ) is the TD-error, 𝜉 (𝑠𝑡 , 𝑎𝑡 ) is the loss applied to the
actor, e.g. policy loss, and the hyperparameter 𝜆 is the weight of
policy loss, 𝜖𝑑 is a base priority to ensure transactions are sampled
with appropriate probabilities at the beginning of training even if
the losses of new samples are high. To optimize prioritized replay
for a PASAC agent, SPER adds the policy loss to the priority in PER,
which makes transactions with larger improvement potential more
likely to be sampled than merely using the TD-error. DDPGfD [24]
adopts similar method but with a different motivation.

In our settings, we store trajectories of experiences instead of
transactions in SPER to train the recurrent neural networks [12].

5 EXPERIMENTS
We study the purposed agent on the match plan generation problem
on a self-made dataset based on real queries in Bing, addressing the
following questions:

Q1. Does the proposed algorithm work better than the heuristic
hand-crafted method tuned by engineers, or other RL algorithms?

Q2. Is it more appropriate that we formulate the problem into a
PARL problem, instead of discretizing the action space?

Q3. How is the improvement of our method in real search scenes?
Q4. How is the effect of applying SPER, and its components?
Q5. Does the proposed agent work well on other PARL bench-

marking baselines?

5.1 Experimental Settings
Dataset Preprocessing. For match plan generation, we experiment

on a dataset that has about 100,000 queries sampled from Bing’s
search log. We filter the dataset in the following aspects:
• We skip a few special queries that do not have embedding or
need additional operations beyond match plans.
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• We skip all the advanced queries (e.g. raw queries contain “site:”).
Because such advanced features cannot be expressed in the query
embedding.
• We only use queries in the market designed for English-speaking
countries to avoid including some skewed data.
• After filtering, the dataset size is about 36,000. In a real search
scenario, we never know what the users want to search for. To
simulate this scenario, we randomly choose 3,000 queries as the
test dataset, and the remaining queries as the training dataset.

Baseline. For the match plans in the currently implemented sys-
tem in Bing, each query is classified into a predefined query class
which has some heuristic hand-crafted rules. We use each query’s
production match plan as the baseline. The production works well
for most queries, thus it is not trivial to outperform the production
on many queries.

Evaluation Metrics for Match Plan Generation. The following
metrics are used in experiments:
• Average Relative Improvement (ARI). ARI is designed for eval-
uating different RL agents. It represents the mean improve-
ment on final returns (sum of rewards in one episode) of all
test queries. It is the most important metric in our exper-
iments because it links firmly with our optimizing target
(final return). A given agent’s ARI is computed as follows:

𝐴𝑅𝐼 =

∑ |𝐷 |
𝑖=1 (𝑅

𝑖
𝑎𝑔𝑒𝑛𝑡 − 𝑅𝑖𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 )
|𝐷 | (11)

where |𝐷 | represents test dataset size, 𝑅𝑖𝑎𝑔𝑒𝑛𝑡 and 𝑅𝑖𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
represents the given agent’s and baseline’s final returns on
the 𝑖𝑡ℎ query in the test dataset.
• Better and Equal. Better means the percentage of queries
in the test dataset that the match plan generated by our
approach is better than the baseline. Equal is defined in a
similar way.

Model Training. The system state alternates between the training
and test stages at fixed intervals. All of our reported experiment
results are from the test stage. At the test stage, it sequentially
evaluates the agent on the whole test dataset. At the training stage,
the agent randomly chooses a query in the training dataset per
episode. We evaluate the agents per 5,000 episodes of training
on the test dataset. Each experiment is repeated three times with
different random seeds.

Implementation Details. Each comparison experiment and PASAC
is trained on one Tesla P100 GPU using PyTorch. In all the ex-
periments, the 𝜆1,2 in Equation 1 are set to 1. More details about
experiment implementation can be found in Appendix.

5.2 Comparison Approaches
We compare PASAC agent with several state-of-the-art methods.
The methods are slightly adjusted to adapt to our scene. To answer
Q2, some state-of-the-art RL methods with discrete action settings
are adopted. All the agents in the comparison are implemented
with LSTM [9, 10] and without advanced components like SPER
for a fair comparison.

Figure 5: Comparison experiments on Average Relative Im-
provement (ARI). The X-axis is the number of thousand
episodes. The Y-axis denotes ARI.

Note that, to answer Q1, all the following approaches are com-
pared with our baseline, i.e. the current heuristic hand-crafted pro-
duction rules used in Bing, as is mentioned in Section 5.1.
• DQN. Deep Q-Learning (DQN) [16] is a well-known Q-learning-
based, off-policy method dealing with discrete action space. In
our scene, we uniformly discretize our continuous action space
(quota) into 20 (DQN-20) and 100 discrete values (DQN-100)
respectively.
• PA-DDPG. Deep Deterministic Policy Gradients (DDPG) [13]
is a state-of-the-art method that is off-policy and Q-learning
based but learns a deterministic policy. To adapt to our scene,
we mainly refer to PA-DDPG [8] to apply DDPG in our problem.
• TD3. Twin Delayed DDPG (TD3) [5] improves the stability and
efficiency of DDPG. We adopt a similar method in PA-DDPG to
adapt to our scene. Details are included in Appendix.
• SAC-Discrete. SAC-Discrete (SAC-D) [3] is an alternative ver-
sion of SAC that can be applied to discrete action settings. We
adopt the same method in DQN to discretize the continuous
action space to make SAC-D available in our settings (SAC-D-20
and SAC-D-100).

5.3 Performance Comparison
Figure 5 shows theARI on test dataset of all comparison approaches.
Table 1 shows Better, Equal and ARI of all mentioned approaches.
DQN-20 and SAC-D-20 are not plotted, because the performances
are similar to DQN-100 and SAC-D-100 which are not satisfactory.

As seen in Figure 5 and Table 1, addressing this problem in a dis-
crete action setting would lead to worse results. On average, DQN
performs theworst in all comparison experiments and demonstrates
a large variance. It empirically shows that DQN’s epsilon-greedy
exploration strategy cannot efficiently explore the large discretized
action space. It could also suffer from Q-value overestimation. SAC-
D outperforms DQN as expected, because not only the algorithm
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Table 1: Better, Equal and ARI of all mentioned approaches. Here we only show each agent’s best performance (on ARI) in
duplicate experiments.

DQN-20 DQN-100 D-SAC-20 D-SAC-100 PA-DDPG TD3 PASAC PASAC+SPER
ARI -1.500 -1.957 0.210 0.460 -2.492 0.8384 1.280 1.912
Better 26.70% 27.43% 40.47% 49.30% 39.97% 41.90% 50.53% 60.10%
Equal 3.70% 4.50% 10.10% 6.03% 3.17% 4.67% 6.07% 11.60%

itself shows superiority as many works concluded, but its explo-
ration controlled by tuned alpha is more effective in our settings as
well, which leads to better results here. However, the discretization
also gives rise to a loss of accuracy in controlling quotas.

As for methods for discrete-continuous hybrid action space set-
tings, PA-DDPG performs the worst. TD3 solves the overestimation
issue in DDPG and performs better than PA-DDPG in our exper-
iments as we expect. However, both PA-DDPG and TD3 fail to
sufficiently explore the large action and state space in our settings,
because learning alpha to control stochasticity is more adaptive
than fixed action space noise in deterministic policy learning. Tak-
ing all the issues above into consideration, as expected, PASAC
performs the best on both stability and efficiency.

5.4 Performance Evaluation

Table 2: Improvement of (Average) IBA, (Average) RS, doc-
uments recalling latency (Latency), documents recalling la-
tency considering reference time (Latency+inference) of our
approach compared to the baseline. Note: "+" represents im-
provement.

IBA RS Latency Latency+inference
Improvement +75.77% -1.47% +28.14% +8.97%

To answer Q3, we first examine the performance of our approach
on each part of the reward mentioned in Section 3. In the test stage,
we do statistics about scaled index block accesses (IBA) improvement
and scaled relevance score (RS) improvement on each query.

In Figure 6 and Table 2, we discover our method achieves only 1/4
IBA with the quality of documents almost unchanged. Because the
production match plans are manually defined by engineers, which
cannot flexibly control the quotas. Moreover, we find that using
our approach, match plan sequences are 3.78% shorter than using
the production rules. Thus, much time is wasted due to unsuitable
quotas and redundant match rules for match rules.

Besides, due to the high cache hit rate in Bing, our approach only
reduces the documents recalling latency of the production by 28.14%
on average per query. In consideration of our models’ inference
time, our approach still improves the latency by 8.97%. We only
use the models without any optimization for inference (e.g. pruned
to save computation, compressed using distillation or quantized
to 16-bits or 8-bits weights), which can further be compressed and
optimized. Thus, this result already shows our method’s feasibility
and superiority applying to the real production of Bing.

5.5 Ablation Study
In response to Q4, we compare results of applying different replay
buffer with PASAC. Policy loss is applied in the priority calculation

Figure 6:Histograms of distributions of IBAandRS improve-
ment in test stage. Since the actual range of RS improvement
is fairly large, we only show [-10, 10] because the data is too
sparse outside of this range.

in all these experiments. We further compare results of applying
SPER with or without policy loss in the priority calculation.

From Figure 7 (upper), we can observe that PER performs even
the worse than the original experience replay buffer. A reason could
be, PER fails to consider the skewed prioritizing issue, and always
samples a small range of queries with similar “difficulty" to find
relevant documents. The other queries, however, are insufficiently
trained. Thus, simply applying PER in our settings is unreasonable.
After conducting our improvement in SPER, the agent performs
better than PER and the original experience replay buffer.

From Figure 7 (lower), we find that SPER with policy loss in
priority performs better. One reason could be, using priority with
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Figure 7: Experiments on ARI using different experience re-
play buffers and SPER with or without policy loss.

policy loss considers another circumstance that a sample has large
potential to improve: policy loss is high and parameters of policy
can be improved.

5.6 Benchmark Games
To evaluate our agent in a broader context and answer Q5, we ex-
periment on two open benchmark games to evaluate our algorithm,
Platform-v0 and Goal-v0 from [2]. These games follow a slightly
different formulation [2] that each discrete action has a separate
continuous action-parameter space. We assume the environments
are fully observable, thus recurrent networks are not used in PASAC
agent in benchmarks.

For benchmarks, we use Microsoft NNI3 to choose the hyperpa-
rameters. The search space and best trial curves are included in the
Appendix. We release the code for reproducibility (see abstract).

We report the best final metric. PASAC significantly outperforms
PA-DDPG on both benchmarks. For Platform-v0, the return has a
range of [0, 1]. Goal-v0 has a maximum return of 50, and PASAC
can almost constantly achieve that after half of training. Our ob-
servation meets the reported poor performance of PA-DDPG in [2].
We observe that PASAC+SPER has almost the same performance

3https://github.com/microsoft/nni

Table 3: Average evaluation results (the average of all
training rewards and final evaluation reward (repeated 100
times)) on benchmarks Platform-v0 and Goal-v0 with PA-
DDPG [8].

Average Eval Return PASAC PASAC+SPER PA-DDPG[8]
Platform-v0 0.9723 0.9727 0.3113
Goal-v0 43.11 43.85 -6.208

as PASAC. This verifies that the stratified sampling may better fit
the environment with skewed prioritizing issue if PER is applied.

6 RELATEDWORK
Our closely related work includes [20]. It works on discretized state
and action space with tabular RL method. It learns a policy for a
specific query class each time and solves it only in discretized space
which limits its generalizability in heterogeneous queries.

Our algorithm is based on Soft Actor-Critic [6], an off-policy
Q-learning based policy gradient method. SAC optimizes an energy-
based stochastic policy. A previous work Deep Deterministic Policy
Gradients (DDPG) [13] is also off-policy and Q-learning based,
but learns a deterministic policy. Twin Delayed DDPG (TD3) [5]
improves the stability and efficiency of DDPG.

Parameterized Action Reinforcement Learning (PARL) refers
to the RL setting that the action space is parameterized (discrete-
continuous hybrid). Current PARL methods mainly originated from
DQN and DDPG, including two classes of methods: PA-DDPG [8]
based on DDPG and P-DQN [26] based on DQN. They use dif-
ferent strategies to combine discrete and continuous actions. P-
DQN [26] learns multiple continuous action policy network for
each discrete action. MP-DQN [2] extends P-DQN to tackle the
problem that Q-value is a function of the joint action-parameter
vector 𝑄 (𝑠 ′, 𝑘 ′, x𝑄 (𝑠 ′)) in normal PAMDP, which may results in
false gradients. However, such a problem does not exist in our
slightly modified setting, since the action-parameter space X in the
match plan generation is inherently defined to be shared for each
𝑘 ∈ A𝑑 . [14] purposes a method to iteratively optimizing discrete
and continuous actions by alternating between them.

We focus on off-policy algorithms and utilize past experience
by storing them in a replay memory [17, 22]. Prioritized Experience
Replay [21] improves the efficiencywith reusing existing experience
by prioritizing transitions with high TD-error. There are different
methods on applying RL on POMDPs [11], while we focus on using
recurrent networks following [9] (RDPG) with backpropagation
through time (BPTT) [25].

7 CONCLUSIONS
To automatically generate good match plans for different queries,
we formulate the match plan generation to the general PARL frame-
work. We propose a novel algorithm, Parameterized Action Soft
Actor-Critic (PASAC), for such RL formulation and corresponding
applications to maximize both expected return and exploration
entropy in the parameterized action space. To address the skewed
prioritizing issue of PER, Stratified Prioritized Experience Replay
(SPER) is applied. Experiment results show that our learned match
plan significantly outperforms the production baseline in terms
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of resource-saving. We also test our algorithm on some existing
open benchmarks. The results demonstrate our agent performs the
state-of-the-art returns in the comparable baselines. Our future
works include further optimize the model reference time, and in-
venting more delicate strategies in exploring the parameterized
action space.
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APPENDIX
A DETERMINISTIC POLICY VERSIONWITH

TD3
In addition to the stochastic policy learning with SAC, we further
purpose a parameterized action agent with a deterministic actor
based on Twin Delayed DDPG (TD3, [18]), to study the effect of
deterministicity to discrete and continuous policy branches.

Since TD3 learns deterministic policy, the continuous action
branch outputs a deterministic value, and the discrete branch still
follows categorical output. We adopt similar techniques such as the
experience replay and recurrent state head. It turns out that the
difference is mainly the exploration on both discrete and continuous
action space.

We thus apply parameter space noise [19] on the deterministic
policy network, where the threshold of empirical action noise is
computed by the sum for discrete and continuous actions. It in-
creases the exploration performance empirically by controlling the
exploration on both spaces.

The update for the policy network is

∇𝐿 (𝜇) = ∇E𝑠∼𝐷 [𝑄𝜃 (𝑠, 𝜇 (𝑠))] = ∇
1
|𝐷 |

∑
𝑠∼𝐷

𝑄𝜃 (𝑠, 𝑘, 𝑥) (12)

The update for the Q-value network is given by

∇𝐿
(
𝜃𝑄

)
= ∇E

[
1
2 (𝑦 −𝑄𝜃 (𝑠, 𝑘, 𝑥))

2
]
, (13)

where 𝑦 = 𝑟 + 𝛾𝑄 ′
𝜃
(𝑠 ′, 𝑥 ′, 𝑘 ′).

B IMPLEMENTATION DETAILS
B.1 State Feature List
Important features for match plan generation are:

Time-dependent features (intermediate system signals when
executing match plans): matched document count, index block
accesses (IBA), position on Inverted Index, accumulated page count
(APC), ...

Time-independent features (query’s depictions): query embed-
ding, query length, query popularity, minimumdocument frequency
(MinDF), ...

B.2 Networks Architecture
Both policy and value networks use two fully connected layers with
512 hidden units. For the recurrent case, both networks use the
output from an LSTM layer [10]. The training of recurrent state uses
backpropagation through time (BPTT) [9] for entire trajectories.
We also apply the Clipped Double Q-learning algorithm in TD3 [5]
to reduce overestimation.

Besides, in our implementation for match plan generation, the
policy network structure is slightly different from the original
PASAC. The outputted categorical distribution of match rules is
used as an input of estimating quotas to help the agent generate
corresponding quotas for match rules.

Figure 8: Relationship between tuning parameters and re-
ward in Goal-v0 experiment. The redder the curve, the
higher the reward.

Figure 9: Relationship between tuning parameters and re-
ward in Platform-v0 experiment. The redder the curve, the
higher the reward.
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Figure 10: The learning curve of PASAC+SPER with best pa-
rameters in Goal-v0.
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Figure 11: The learning curve of PASAC+SPER with best pa-
rameters in Platform-v0.

C HYPERPARAMETER TUNING FOR
BENCHMARKS

We use Microsoft NNI4 and OpenPAI5 to search hyperparameters.
The final metric to report to NNI is set to the sum of (1) average
training rewards (per episode) and (2) final evaluation reward (re-
peated 100 times). The intermediate metric is set to the evaluation

4https://github.com/microsoft/nni
5https://github.com/microsoft/pai
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reward per 10 episodes. We also use the early stop assessor. We
summarize the search space for each hyper-parameter below.

Table 4: Search space of hyperparameters for benchmarks.

Name Type Range
batch_size choice {32,128,256}
hidden_size choice {512,1024}
gamma choice {0.95,0.99,0.997}
policy_lr loguniform [1e-4,1e-3]
value_lr loguniform [3e-4,3e-3]
soft_tau loguniform [1e-3,3e-2]

For loguniform, the range shows the minimal and maximum
values. For the type choice, it can only take the value in the set.

We run the PASAC+SPER, PASAC, and the PA-DDPG exper-
iments for tuning parameters for about 24 hours. Figure 8 and
Figure 9 show the relationship between parameters and rewards
in PASAC+SPER experiment. Figure 10 and Figure 11 show the
learning curve of PASAC+SPER with best parameters in Goal-v0
and Platform-v0 environment. These results are consistent with
Table 3.
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