
Learning to Navigate in Mazes with Novel Layouts
Using Abstract Top-down Maps

Linfeng Zhao1, Aswin Shriram Thiagarajan1, Lawson L.S. Wong1

Abstract— Learning navigation capabilities in different en-
vironments has long been one of the major challenges in
decision-making. In this work, we focus on zero-shot navigation
ability using given abstract 2-D top-down maps. Like human
navigation by reading a paper map, the agent reads the map as
an image when navigating in a novel layout, after learning to
navigate on a set of training maps. We propose a model-based
reinforcement learning approach for this multi-task learning
problem, where it jointly learns a hypermodel that takes top-
down maps as input and predicts the weights of the transition
network. It disentangles the variations in map layout and goal
location and enables longer-term planning ability for novel
goals compared to reactive policies. We use the DeepMind Lab
environment and customize layouts using generated maps. Our
method can adapt better to novel environments in zero-shot
and is more robust to noise.

I. INTRODUCTION

If we provide a rough solution of a problem to a robot,
can the robot learn to follow the solution effectively? In
this paper, we study this question within the context of
maze navigation, where an agent is situated within a maze
whose layout has never been seen before, and the agent
is expected to navigate to a goal without first training on
or even exploring this novel maze. This task may appear
impossible without further guidance, but we will provide the
agent with additional information: an abstract 2-D top-down
map, treated as an image, that illustrates the rough layout of
the 3-D environment, as well as indicators of its start and
goal locations (“abstract map” in Figure 1). This is akin to a
tourist attempting to find a landmark in a new city: without
any further help, this would be very challenging; but when
equipped with a 2-D map of environment layout, the tourist
can easily plan a path to reach the goal without needing to
explore or train excessively.

Navigation is a fundamental capability of all embodied
agents, both artificial and natural, and therefore has been
studied under many settings. In our case, we are most
concerned with zero-shot navigation in novel environments,
where the agent cannot perform further training or even
exploration of the new environment; all that is needed to
accomplish the task is technically provided by the abstract
2-D map. This differs from the vast set of approaches based
on simultaneous localization and mapping (SLAM) typically
used in robot navigation [2], where the agent can explore and
build an accurate but specific occupancy map of each envi-
ronment prior to navigation. Recently, navigation approaches

1Khoury College of Computer Sciences, Northeastern University, Boston,
MA 02115, USA. Correspondence zhao.linf@northeastern.edu.

A extended version available at http://lfzhao.com/map-nav [1].

Fig. 1: We develop an agent that can perform zero-shot navigation
on novel tasks T (unseen maps in the DeepMind Lab navigation
simulator in blue box), without needing to first explore the new
3-D environment. Instead, the agent is given the top-down view as
additional guidance: an abstract 2-D occupancy map, and a goal
and start position (bottom left black dot and top right gray dot).
Although the map provides a rough solution for navigation, the
path cannot be directly followed due to the continuous nature of the
agent’s environment, as well as unknown map scale, inaccuracies
in the map, and noisy localization.

based on deep reinforcement learning (RL) approaches have
also emerged, although they often require extensive training
in the same environment [3], [4]. Some deep RL approaches
are even capable of navigating novel environments with new
goals or layouts without further training; however, these ap-
proaches typically learn the strategy of efficiently exploring
the new environment to understand the layout and find the
goal, then exploiting that knowledge for the remainder of the
episode to repeatedly reach that goal quickly [5]. In contrast,
since the solution is essentially provided to the agent via the
abstract 2-D map, we require a more stringent version of
zero-shot navigation, where it should not explore the new
environment; instead, we expect the agent to produce a near-
optimal path in its first (and only) approach to the goal.

The solution to navigation using the provided abstract map
seems obvious: we should localize ourselves on the abstract
map (image), plan a path, and simply follow it. However,
this approach suffers from a key difficulty: determining the
correspondence between 2-D image maps and 3-D environ-
ments. It is not obvious how to execute the abstract plan in
practice because the state and action spaces are completely
different, and may even be discrete in the abstract map but
continuous in the real environment.

Instead, in this paper we explore an alternative approach
that avoids explicitly localizing and planning on the abstract
map. The key idea is to plan in a learned model that only
considers the abstract map (and start/goal information) as
contextual input, but does not directly plan on the map image

http://lfzhao.com/map-nav

itself. Specifically, we propose learning a task-conditioned
hypermodel that uses the abstract map context to produce
the environment-specific parameters (weights) of a latent-
state transition dynamics model. We then perform planning
by using sampling-based forward search on this task-specific
dynamics model. Importantly, although the learned transition
model operates in latent state space, it uses the agent’s
original action space, so that planned trajectories can be
directly executed in the environment, without needing to
solve the aforementioned correspondence problem. The hy-
permodel and the state encoder are learned in an end-to-end
fashion, using loss functions that assess whether the learned
components were able to support effective planning.

We refer to our method as the Map-conditioned Multi-task
Navigator (MMN). We start with a model-based RL algo-
rithm, MuZero [6], and introduce the above task-conditioned
hypermodel based on HyperNetworks [7]. To tackle chal-
lenges in training, we additionally introduce an n-step gen-
eralization of Hindsight Experience Replay (HER) [8] and
an auxiliary hypermodel loss. Additionally, we introduce
a model-free RL baseline, named Map-conditioned Ape-X
HER DQN (MAH). This method builds upon DQN [9] and
augments the input with the provided abstract map, and uses
standard single-step HER.

In experiments performed in DeepMind Lab [10], a 3-D
maze simulation environment shown in Figure 1, we show
that both approaches achieve effective zero-shot navigation
in novel environment layouts, though the model-based MMN
is significantly better at long-distance navigation. Addition-
ally, whereas a baseline approach using deterministic path
planning and reactive navigation quickly fails when the map
is inaccurate or localization is noisy, our experiments suggest
that MMN is significantly more robust to such noise.

II. RELATED WORK

Navigation is widely studied in robotics, vision, RL,
and beyond; to limit the scope, we focus on zero-shot
navigation in novel environments, which is most relevant
to this work. This excludes traditional approaches based on
SLAM [2], since those methods need to explicitly build a
map before navigation, and the map can only be used for
the corresponding environment and cannot be transferred to
other layouts. Learning-based methods (e.g., [3], [4]) also
require extensive training data from the same environment;
they demonstrate generalization to new goals in the environ-
ment, but not transfer to new layouts. [5], [11], [12], [13]
demonstrate agents that learn strategies to explore the new
environment and potentially build maps of the environment
during exploration; in contrast, we are interested in agents
that do not need to explore the new environment. [12] learns
to exploit semantic cues from its rich visual input, which is
orthogonal to our work since we use the state directly. Other
domains such as first-person-shooting games also involve
agents navigating in novel environments [14], [15], [16], but
since navigation is not the primary task in those domains,
the agents may not need to actually reach the specified goal
(if any). Most closely related to our work is [17], who also

use 2-D occupancy maps as additional input and perform
experiments in DeepMind Lab. Their approach is specific to
map-based navigation, whereas our methodology aims to be
less domain specific. [18] also use HyperNetworks, but they
primarily focus on manipulation.

Our work is an instance of end-to-end model-based plan-
ning [19], [20], [6]. It has also been referred to as implicit
model-based planning since the model is learned implicitly.
It rolls out trajectories using a learnable transition model
and jointly trains the value and policy networks along with
the transition network. This is different from decoupled
model learning and planning, such as Dyna-style [21]. One
important distinction in end-to-end planning is whether the
gradients are passed through the planning computation. For
example, MuZero [6] uses sampling-based search method,
Monte Carlo tree search (MCTS), that is hard to differentiate
though. Other sampling-based approaches include [22], [23].
Another thread of work includes Value Iteration Networks
and its variants [24], [25], [26], [27], which iteratively applies
Bellman operators and is easily differentiable. They have also
been used in end-to-end navigation, including CMP [28] and
DAN [29]. However, they are limited to grid-like structure as
the VIN backbone is 2-D convolution. Additionally, a body
of work [30], [31], [32], [33], [34] studies learning structured
latent models or representations useful for planning.

Our method is based on MuZero [6], but it has only been
used on single map or goal because it learns purely from
rewards. We additionally augment it with task conditioning
(map and goal) to relax its dependence on task. [35] concur-
rently develop goal-relabeling for AlphaZero, but instead of
jointly learning model and planning in MuZero, AlphaZero
requires a given model, which limits its applicability to
problems like maze navigation in continuous space.

III. PROBLEM STATEMENT

We consider a distribution of navigation tasks ρ(T). Each
task is different in two aspects: map layout and goal location.
(1) Abstract map. The layout of each navigation task is
specified by an abstract map. Specifically, an abstract map
m ∈ RN×N is a 2-D occupancy grid, where cell with
1s (black) indicate walls and 0s (white) indicate nagivable
spaces. A cell does not correspond to the agent’s world, so
the agent needs to learn to localize itself on an abstract 2-D
map (i.e., to know which part of map it is currently at). We
generate a set of maps and guarantee that any valid positions
are reachable, i.e., there is only one connected component in
a map. (2) Goal position. Given a map, we can then specify
a pair of start and goal position. Both start and goal are
represented as a “one-hot” occupancy grid g ∈ R2×N×N

provided to the agent. For simplicity, we use g to refer to
both start and goal, and we denote the provided map and
start-goal positions c = (m, g) as the task context.

We formulate each navigation task as a goal-reaching
Markov decision process (MDP), consisting of a tuple
〈S,A, P,RG , ρ0, γ〉, where S is the state space, A is the
action space, P is the transition probability function P :
S ×A → ∆(S), ρ0 = ρ(s0) is the initial state distribution,

and γ ∈ (0, 1] is the discount factor. In the learning,
we assume transitions are deterministic. For each task, the
objective is to reach a subset of state space SG ⊂ S indicated
by a reward function RG : S × A → R. We denote a
task as T = 〈P,RG , ρ0〉, since a map and goal specify the
dynamics and reward function of a MDP, respectively. In the
episodic goal-reaching setting, the objective is typically not
discounted (γ = 1) and the reward is −1 for all non-goal
states, i.e., RG(s, a) = −I[s 6= g], g ∈ SG .

We emphasize that although the abstract map’s occupancy
grid corresponds to the environmental layout, the correspon-
dence between abstract “states” (grid cells) and agent states
(pose and velocity) is not known in advance, and likewise for
actions (grid-cell transitions vs. forward/backward/rotate).
Furthermore, the learned correspondence may not be reliable
due to inaccuracies in the abstract map and localization error.

IV. LEARNING TO NAVIGATE USING ABSTRACT MAPS

This section presents an approach that can effectively use
abstract maps (in image form) by end-to-end model-based
planning based on MuZero [6]. We expect the agent to
be able to efficiently train on multiple maps as well as
generalize to new maps.

This poses several technical challenges. (i) A local
change in map may introduce entirely different environment
structure, so we need the model and planner to adapt to the
task context in a different way than conditioning on state,
and not directly condition on the entire task context. (ii)
During training, we can only rely on a very small proportion
of training tasks (e.g., 20 of 13 × 13 maps). This requires
compositional generalization from existing map patches to
novel combinations of patches. (iii) The reward signal is
sparse, but model learning is done jointly and purely relies
on reward signal. To this end, we first introduce the idea of
using a hypermodel that learns to predict weights of transition
model, instead of state output directly, to tackle (i) and
(ii). For the challenge (iii), we use the idea from Hindsight
Experience Replay (HER) [8] to reuse failure experience and
also add an auxiliary loss of predicting transitions.

A. Task-conditioned hypermodel

Our goal is to create a transition model that accurately
handles various map inputs, enabling planning in 3D envi-
ronments with arbitrary layouts. In a single-task training
schema, a straightforward approach would be to learn a
parameterized transition function fi(s, a) for each individ-
ual map. However, we aim to leverage shared knowledge
between navigation tasks, where maps often exhibit com-
mon local patterns and require the ability to generalize to
recombination of known patterns. For instance, in Figure 2,
moving right on the center of the box in the left map shares
computation with the right map. This phenomenon also ap-
plies to larger map areas and reward prediction. By enabling
the agent to recognize these local computational patterns, it
can transfer to new tasks by compositional generalization.

We propose to build a meta network hψ , or hypermodel,
to learn the “computation” of the transition model fψ simul-

Fig. 2: Applying the hypermodel hψ on map m1 and m2 outputs
two sets of transition network weights φ1 = hψ(m1, g1) and φ2 =
hψ(m2, g2). Each transition network uses their weight φi to predict
next state f(s, a;φi) = s′ Since the maps may share local patterns
at some scales (cropped 3 × 3 patches), they can be captured by
the hypermodel hψ .

taneously for all maps with abstract 2-D maps as input. The
transition model for task T (map-goal pair) is a function fi
that maps current (latent) state and action to a next (latent)
state. We parameterize a transition function fi as a neural
network with its parameter vector φi. The set {fi} represents
transition functions of all tasks belonging to a navigation
schema (e.g., a certain size of map), and these tasks have
similar structure. This set of transition functions/networks
are characterized by the context variables c = (m, g), i.e.,
the abstract 2-D map and goal.1 This implies that parameter
vectors φi live in a low-dimensional manifold. Thus, we
define a mapping h : C → Φ that maps the context of a
task to the parameter vector φi of its transition function fi,
predicting state s′ and reward r. We parameterize h also as
a network with parameter ψ:2

hψ : c 7→ φ, fφ : s, a 7→ s′, r. (1)

This can be viewed as soft weight sharing between multiple
tasks. It efficiently maps low-dimensional structure in the
MDP, specified by the map, to computation of the transition
model. It may also be viewed as a structured learned “dot-
product” between task context cT and state and action st, at
to predict the next state. The idea of predicting the weights
of a main network using another meta-network is also known
as HyperNetworks [7], [36].

B. Planning using a learned hypermodel

Equipped with a map-conditioned model, we use it to
search for actions according to the map layout and goal
location: (a1, ..., ak) = Plan({si}, c, fφ). We follow MuZero
[6] to use Monte-Carlo tree search (MCTS) to search

1Concretely, a task context c ∈ R4×N×N has four components:
downsampled global occupancy map, cropped local occupancy map, and
one-hot goal and start occupancy maps; N is downsampled size.

2We only predict weights of the transition model fφ : S×A → S which
operates on a latent state space. The mapping from environment observations
to latent states e : O → S is not predicted by a meta network. Since the
latent space is low-dimensional, it is feasible to predict weight matrices of
a transition network for it.

Fig. 3: We use yellow or circles to indicate predicted states or other quantities, and grey or squares from actual interactions. (Left) Inference:
search with learned model. Applying MCTS with hypermodel to search for behavioral policy and value, and act with a sampled action.
(Right) Training: building learning targets. Computing targets and backpropagating from loss. The blue line indicates n-step relabelling.
We only illustrate backpropagation for one reward node for simplicity. The solid red line shows the gradient flow from auxiliary model
loss to the meta-network’s weight ψ. The dashed red line is the gradient from task loss.

with the learned hypermodel fφ. The planner needs to act
based on different task inputs, which necessitates a task-
dependent value function that differs from the single-task
setup in MuZero. Consequently, the planner Plan(si, c, fφ)
must strongly correlate its computation with the map and
goal input c = (m, g), which presents a challenge for model-
free reactive agents.

As shown in Figure 3 (left), we begin by encoding the
observed joint state ot into a latent space st using the learned
encoder eθ(ot). This serves as the root node of the search tree
(top blue circle). To predict the next state given a latent state
and a candidate action, we use the hypermodel fφ. For each
state (blue circle nodes), we use another network gθ(st, c)
to predict the policy πt and value function vt (not shown).
These networks guide the search, where the value network
estimates the future value and the policy network provides
candidate actions for rollout in MCTS (blue circles), as
described in [6]. During training, they are trained to minimize
the loss with searched values and actions. Once a number of
MCTS simulations are completed (yellow rounded boxes),
we backup the statistics to the root node and sample an action
(green boxes) from the searched action distribution (purple
boxes). The trajectory and corresponding abstract map and
goal (cT , {st, at, rt, st+1}t) are saved to a centralized replay
buffer for training.

At zero-shot evaluation time, given a new abstract map,
we plan with the trained hypermodel: (1) given a map and
goal cT = (mT , gT), at the beginning of the episode,
compute the hypermodel weights φ = h(c;ψ) by applying
the meta-network on the task context cT , (2) start MCTS
simulations using the hypermodel f(s, a;φ) for latent state
predictions, (3) get an action and transit to next state, and
go to step (2) and repeat. Moreover, if we assume access
to a landmark oracle on given maps, we can perform
hierarchical navigation by generating a sequence of local

subgoals {(m, gi)}ni=1, and plan to sequentially achieve each
landmark; see Section V-C for more details.

C. n-step Goal Relabelling: Denser Reward
Jointly training a planner with learned model can suffer

from lack of reward signal, especially when the model
training entirely relies on reward from multiple tasks, which
is common in model-based agents based on value gradients
[6], [20]. Motivated by this, we introduce a straightforward
strategy to enhance the reward signal by implicitly defining
a learning curriculum, named n-step hindsight goal rela-
belling. This generalizes the single-step version of Hindsight
Experience Replay (HER) [8] to n-step return relabeling.

Motivation. As shown in Figure 3 (right), we sample a
trajectory of experience (cT , {st, at, rt, st+1}t) on a specific
map and goal cT = (mT , gT) from the replay buffer.
Observe that, if the agent does not reach the goal area SG (a
100×100 cell in the agent’s 3-D environment, denoted by a
2-D position gT on the abstract 2-D map), it will only receive
reward rt = −1 during the entire episode until timeout. In
large maps, this hinders the agent to learn effectively from
the current map mT . Even if the agent partially understands
a map, it would rarely experiences a specific goal area on the
map again.3 This is more frequent on larger maps in which
possible navigable space is larger.

Relabelling n-step returns. Motivated by single-step HER,
we relabel failed goals to randomly sampled future states
(visited area) from the trajectory, and associating states with
the relabelled n-step return. Concretely, the task-conditioned
bootstrapped n-step return is

GTt
.
= rt+1 + γrt+2 + · · ·+ γnvTn ,

[
vTn , π

T
n

]
= gθ(st, cT)

(2)

3In our extremely low data regime, the agent only has one start-goal pair
on a small set of map. While on low data regime, the agent can train on
randomly sampled pairs on the maps. See the Setup for more details.

where vTn is the state-value function bootstrapping n steps
into the future from the search value and conditional on
task context cT . This task-conditioned value function is
asymmetric since R12 = S 6= Sg = R2.

Steps. To relabel the task-conditioned bootstrapped n-step
return, there are three steps, demonstrated by the blue lines
from “N -step Relabel” box. (1) Goal (red boxes). Randomly
select a reached state st ∈ R12 from the trajectories, then
take the 2-D position (x, y) ∈ R2 in agent world and convert
it to a 2-D goal support grid gTS . Then, relabel the goal in
task context cTS = (mT , gTS), keeping the abstracted map
and start position unchanged. (2) Reward (orange boxes).
Recompute the rewards along the n-step segment. In episodic
case, we need to terminate the episode if the agent can
reach the relabelled goal area gTS , by marking ”done” at the
certain timestep or assigning zero discount after that step
γt = 0 to mask the remaining segment. (3) Value (purple
circles). Finally, we need to recompute the bootstrapping
task-conditioned value vTSn , πTSn = gθ(st, cTS).

Empirically, this strategy significantly increases the effi-
ciency of our multi-task training by providing smoothing
gradients when sampling a mini-batch of n-step targets from
successful or failed tasks. It can also be applied to other
multi-task agents based on n-step return.

D. Joint optimization: Multi-task Value Learning

Our training target has two components. The first com-
ponent is based on the value gradient objective in MuZero
[6], [20], using relabelled experiences from proposed n-step
HER. It is denoted by Lktask for step k = 1, . . . ,K. However,
this loss is only suitable for single-task RL.

Thus, we propose an auxiliary model prediction loss,
denoted by Lkmodel in Figure 3 (right). The motivation is
to regularize that the hypermodel fφ(s, a, hψ(cT)) should
predict trajectory based on the information of given abstract
map and goal cT . The objective corresponds to maximizing
the mutual information between task context cT and pre-
dicted trajectories τ̂T from the hypermodel on sampled tasks
T ∼ ρ(T):

max
hψ

ET ∼ρ(T) [I(cT ; τ̂T)] , (3)

where hψ(cT) = φ is the meta network predicting the
weight of transition network fφ. Observe that: I(τ ; c) =
H(τ) − H(τ |c) ≥ H(τ) + Eτ,c [log q(τ |c)], we can equiv-
alently optimize the RHS maxh ET [log q(τ |c)] ⇐⇒
maxh E(s,a,s′) [log q(s′|s, a;h(c))] (subscripts omitted). This
objective is equivalent to minimizing the loss between
predicted states and true states from environment, for all
transition tuples across all tasks. The final loss is given
by the sum over multiple steps:

L(ψ, φ, θ) =

n∑
k=1

Lktask + Lkmodel, (4)

where k = 1, ...,K, and K is the length of training segment.

V. EXPERIMENTS

In the experiments, we assess our method and analyze
its performance on DeepMind Lab [10] maze navigation
environment. We focus on zero-shot evaluation results, while
more results are available in the extended version [1].

A. Experimental setup

We perform experiments on DeepMind Lab [10], an RL
environment suite supporting customizing 2-D map layout.
As shown in Figure 1, we generate a set of abstract 2-D maps,
and use them to generate 3-D environments in DeepMind
Lab. Each cell on the abstract map corresponds to 100 units
in the agent world. In each generated map, all valid positions
are reachable, i.e., there is only one connected component in
the map. Given a sampled map, we then generate a start-
goal position within a given distance range. Throughout
each task, the agent receives the abstract map and start/goal
location indicators, the joint state vector o ∈ R12 (consisting
of position R3, orientation R3, translational and rotational
velocity R6), and reward signal r. The action space is
{forward, backward, strafe left, strafe right, look left, look
right}, with an action repeat of 10. This means that, at
maximum forward velocity, the agent can traverse a 100×100
block in two steps, but typically takes longer because the
agent may slow down for rotations. In the experiments of
Section V-D, the agent receives a noisy version of the state
vector to simulate effects of imperfect localization.

a) Training settings: We train a set of agents on a
variety of training settings, which have several key options:
(1) Map size. We mainly train on sets of 13×13, 15×15, 17×
17, 19 × 19, 21 × 21 maps. One cell in the abstract map is
equivalent to a 100 × 100 block in the agent’s world. (2)
Goal distance. During training, we generate local start-goal
pairs with distance between 1 and 5 in the abstract map. (3)
Map availability. For each map size, we train all agents on
the same set of 20 generated maps, with different randomly
sampled start-goal pairs in each episode.

b) Evaluation settings: We have several settings for
evaluation: (1) Zero-shot transfer. We mainly study this
type of generalization, where the agent is presented with
20 unseen evaluation maps, and has to navigate between
randomly generated start-goal pairs of varying distances.
(2) Goal distance on abstract map. We consider both local
navigation and hierarchical navigation. In the local case,
we evaluate on a range of distances ([1, 15]) on a set of
maps, while in the hierarchical case, we generate a set of
landmarks with a fixed distance of 5 between them and
provide these to agents sequentially. (3) Perturbation. To
understand how errors in the abstract map and in localization
affects performance, we evaluate agents with maps and poses
perturbed by different strategies.

c) Evaluation metrics: We mainly report success rate
and (approximate) SPL metric [37] with 95% confidence
intervals (higher SPL is better). We further explain the
metrics in the extended version [1]. We report results from
fully trained agents to compare asymptotic performance; no
training is performed on evaluation maps.

Fig. 4: (Left) Zero-shot evaluation performance on 13× 13 maps. Local navigation with different distances between start and goal, from
1 to 15. (Right) Performance of our method on larger maps.

d) Methods: We compare our model-based approach
against two model-free baselines and other methods. More
details are available in the extended version [1].

1) Map-conditioned Multi-task Navigator (MMN), model-
based. Our map-conditioned planner based on MuZero
and improved with n-step HER and multi-task training.

2) Map-conditioned Ape-X HER DQN (MAH), model-
free. A reactive baseline based on Ape-X DQN [38]
and single-step HER [8], conditioned on map and goal.

3) Single-task Ape-X HER DQN (DQN†), model-free,
based on Ape-X DQN [38] and single-step HER [8].
No task context c (map or goal) as input.

4) Hand-crafted planner. In the experiments of Section V-
D, we create a planner with deterministic path planning
and reactive navigation, to study robustness to noise in
the abstract map and in localization.

5) Random, a reference of the navigation performance.

We also tested on Map-Planner [39], which combines graph
search and DQN, but it is not suitable for map-conditioned
setup and requires a different evaluation process. More
details are in the extended version [1].

B. Zero-shot local navigation in novel layouts

For zero-shot generalization of locally trained agents,
we train all four agents on 20 of 13 × 13 maps with
randomly generated local start-goal pairs with distance [1, 5]
in each episode. We train the agents until convergence; MAH
typically takes 3× more training episodes and steps. We
evaluate all agents on 20 of unseen 13×13 maps and generate
5 start-goal pairs for each distance from 1 to 15 on each map.
The results are shown in Figure 4 left. MMN and MAH
generally outperforms the other two baselines. MMN has
better performance especially over longer distances, both in
success rate and successful-trajectory length, even though it
was only trained on distances ≤ 5. Since we compare fully
trained agents, we found MMN performs asymptotically
better than MAH. Additionally, as shown in Figure 4 right,
we also train and evaluate MMN on larger maps from 15×15
to 21 × 21. Observed with similar trend to 13 × 13 maps,
when trained with start-goal distance ≤ 5, the agent will find
distant goal and larger maps more difficult.

C. Hierarchical navigation in novel layouts

This section performs hierarchical navigation experiment,
which provides an additional landmark oracle to generate
sequences of subgoals between long-distance start-goal pairs,
and evaluate the performance of hierarchical navigation. The
agent is trained on 13 × 13 maps, and evaluate on 20 of
13 × 13 unseen maps. On each map, we use the top-right
corner as the global start position and the bottom-left corner
as the global goal position, then plan a shortest path in
the abstract 2-D map, and generate a sequence of subgoals
with distance 5 between them; this typically results in 3
to 6 intermediate subgoals. Consecutive subgoal pairs are
provided sequentially to the agent as local start-goal pairs to
navigate. The navigation is considered successful only if the
agent reaches the global goal by the end.

TABLE I: Hierarchical Navigation of distance between the land-
marks in distances from 1 to 5, using SPL metric and success
rate (SR, only for distance 5). Landmarks are generated sub-goals
between fixed start-goal pairs on 20 maps.

Landmark Distance 1 2 3 4 5 5 (SR)

MMN 0.61 0.59 0.68 0.45 0.63 0.80
MAH 0.24 0.42 0.45 0.41 0.28 0.45
DQN† 0.00 0.00 0.00 0.00 0.00 0.00

Random 0.00 0.00 0.00 0.00 0.00 0.00

We evaluated MMN and MAH on the 20 evaluation maps.
We provide the next subgoal when the current one is reached
or until timeout. As shown in Table I, our model-based
MMN outperforms the model-free counterpart by a large
margin. MMN can reach 16 out of 20 global goals, which
include all 9 successful cases of MAH. We visualize five
trajectories of zero-shot hierarchical navigation in Figure 5.
The model-based MMN is more robust to the intermediate
failed subgoals by navigating to the new subgoal directly,
where the model-free MAH gets stuck frequently.

D. Robustness to map and localization errors

To further study the robustness of our method and the
importance of each component, we considered breaking three
components in closed-loop map-based navigation: Map – (1)
→ Path – (2) → Environment – (3) → Map (repeat). In
general, our learning-based agent is robust to these changes.

Fig. 5: Trajectories from hierarchical navigation in zero-shot on 13 × 13 maps. Since there is a fixed scaling factor from maps to
environments, we can compute the corresponding location on the abstract map and visualize trajectories, while the agent does not know
this domain knowledge. The top-right corner is the start, and the bottom-left is the goal. Other darker cells are generated subgoals with
distance 5. The top row is for MMN and bottom row is for MAH. For the first 4 tasks (columns), MMN successfully reached the goals,
while MAH failed. Both methods failed in the last task.

Fig. 6: Violin plots show the SPL of MMN with different map flip ratio (left) and localization noise level (right). The two figures clearly
show the negative impact of imperfect information, which also justify the importance of the guidance.

Fig. 7: (left pair) MMN visualized with perturbed locations; even
though the provided state is noisy, MMN successfully reaches the
goal. (right pair) Deterministic planner is unable to reach the goal
when the provided state is noisy. (We only show the unperturbed
locations in this case for clarity in visualization.) MMN still reaches
the goal with 50 units of noise (0.5 cell), while the deterministic
planner gets stuck at some subgoals or runs out of budget.

To illustrate the difficulty of the problem, we considered
a hard-coded strategy (hand-crafted deterministic planner)
based on perfect information of the environment (e.g., can
plan on map) for comparison correspondingly: (1) known
perfect maps and intermediate landmarks, (2) scaling factor
(unavailable to MMN), and (3) world position on map. Since
we assume that it has perfect localization and landmarks, the
key step is to reach a landmark given current location, which
consists of several procedures: (a) change the orientation to
the target landmark, (b) move forward along the direction,
and (c) stop at the target cell as soon as possible.

a) Perturbing planning: We try to break the implicit
assumption of requiring perfect abstract map information.

We adopt the hierarchical setting, but generating subgoals
on perturbed maps, where some proportion of the map’s
occupancy information is flipped. In Figure 6 (left), as the
perturbation level increases, MMN’s performance gradually
decreases, but it still navigates successfully with significant
noise levels. More results in the extended version [1].

TABLE II: Success rate for perturbing action mapping, comparing
with unperturbed MMN for reference.

Goal Distance 2 4 6 8 10

MMN (Perturbed) 0.80 0.85 0.71 0.40 0.36
MMN (Default) 0.91 0.90 0.71 0.58 0.43

b) Perturbing action mapping: We break the implicit
requirement of known scaling between map and environment.
We provide the agent with randomly transformed maps with
random perspective transformation, where the ratio (in both
x and y directions) is different. As shown in Table II, per-
turbed MMN’s performance decreases gracefully compared
to unperturbed one, which shows that our agent rely little on
this knowledge or any perfect relation.

c) Perturbing location: We break the identifiability of
agent position (a part of its joint state) by applying random
noise to given position. We aim to show that our agent

does not rely on the position to understand the map, since
providing position in the agent world has no relation with
localizing on abstract maps and our learning-based method
can adapt to the noise. In Figure 6 (right), even though MMN
is trained without noise, it tolerates some amount of noise
and maintains relatively high SPL even at 50 units of noise
(corresponding to 0.5 cell width). In Figure 7, we visualize
the trajectories of MMN and the deterministic planner to
qualitatively demonstrate MMN’s robustness to noise.

VI. CONCLUSION

In this work, we have presented an end-to-end model-
based approach, MMN, for enabling agents to navigate in
environments with novel layouts. By using provided abstract
2-D maps and start/goal information, MMN does not re-
quire further training or exploration (zero-shot). Compared
to the map-conditioned model-free counterpart MAH, both
approaches performed well in zero-shot navigation for short
distances; for longer distances (with access to a landmark
oracle), our model-based approach MMN performed signifi-
cantly better. In future work, we will explore learned subgoal
generator, extend this work to handle visual observation
input, and perform navigation in rich visual environments.

REFERENCES

[1] L. Zhao, A. S. Thiagarajan, and L. L. Wong, “Full version of learning
to navigate in mazes with novel layouts using abstract top-down maps,”
http://lfzhao.com/map-nav.

[2] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, 2005.
[3] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino,

M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, et al., “Learning to
navigate in complex environments,” in ICLR, 2017.

[4] P. Mirowski, M. Grimes, M. Malinowski, K. Hermann, K. Anderson,
D. Teplyashin, K. Simonyan, A. Zisserman, R. Hadsell, et al., “Learn-
ing to navigate in cities without a map,” in NeurIPS, 2018.

[5] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Sil-
ver, and K. Kavukcuoglu, “Reinforcement learning with unsupervised
auxiliary tasks,” in ICLR, 2017.

[6] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al.,
“Mastering atari, go, chess and shogi by planning with a learned
model,” arXiv:1911.08265, 2019.

[7] D. Ha, A. Dai, and Q. V. Le, “Hypernetworks,” arXiv:1609.09106,
2016.

[8] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, O. P. Abbeel, and W. Zaremba, “Hindsight
experience replay,” in NeurIPS, 2017.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, Feb. 2015. [Online]. Available:
http://www.nature.com/articles/nature14236

[10] C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright,
H. Küttler, A. Lefrancq, S. Green, V. Valdés, A. Sadik, et al.,
“Deepmind lab,” arXiv:1612.03801, 2016.

[11] T. Chen, S. Gupta, and A. Gupta, “Learning exploration policies for
navigation,” in ICLR, 2019.

[12] S. Gupta, V. Tolani, J. Davidson, S. Levine, R. Sukthankar, and
J. Malik, “Cognitive mapping and planning for visual navigation,”
International Journal on Computer Vision, 2019.

[13] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov,
“Learning to explore using active neural slam,” in ICLR, 2020.

[14] G. Lample and D. S. Chaplot, “Playing fps games with deep rein-
forcement learning,” in AAAI, 2017.

[15] A. Dosovitskiy and V. Koltun, “Learning to act by predicting the
future,” in ICLR, 2017.

[16] V. Zhong, T. Rocktäschel, and E. Grefenstette, “RTFM: Generalising
to new environment dynamics via reading,” in ICLR, 2020.

[17] G. Brunner, O. Richter, Y. Wang, and R. Wattenhofer, “Teaching a
machine to read maps with deep reinforcement learning,” in AAAI,
2018.

[18] Y. Huang, K. Xie, H. Bharadhwaj, and F. Shkurti, “Continual model-
based reinforcement learning with hypernetworks,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 799–805.

[19] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel, “Value
iteration networks,” in NeurIPS, 2016.

[20] J. Oh, S. Singh, and H. Lee, “Value prediction network,” in NeurIPS,
2017.

[21] V. Pong, S. Gu, M. Dalal, and S. Levine, “Temporal difference models:
Model-free deep rl for model-based control,” arXiv:1802.09081, 2018.

[22] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,”
arXiv:1811.04551, 2018.

[23] K. Chua, R. Calandra, R. McAllister, and S. Levine, “Deep rein-
forcement learning in a handful of trials using probabilistic dynamics
models,” in NeurIPS, 2018.

[24] A. Tamar, Y. Wu, G. Thomas, S. Levine, and P. Abbeel,
“Value Iteration Networks,” in Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence. Melbourne,
Australia: International Joint Conferences on Artificial Intelligence
Organization, Aug. 2017, pp. 4949–4953. [Online]. Available:
https://www.ijcai.org/proceedings/2017/700

[25] L. Lee, E. Parisotto, D. S. Chaplot, E. Xing, and R. Salakhutdinov,
“Gated Path Planning Networks,” arXiv:1806.06408 [cs, stat], June
2018, arXiv: 1806.06408. [Online]. Available: http://arxiv.org/abs/
1806.06408

[26] L. Zhao, X. Zhu, L. Kong, R. Walters, and L. L. S. Wong,
“Integrating Symmetry into Differentiable Planning,” in ICLR 2023.
ICLR, June 2022, arXiv:2206.03674 [cs] type: article. [Online].
Available: http://arxiv.org/abs/2206.03674

[27] L. Zhao, H. Xu, and L. L. S. Wong, “Scaling up and Stabilizing
Differentiable Planning with Implicit Differentiation,” in ICLR
2023, Feb. 2023. [Online]. Available: https://openreview.net/forum?
id=PYbe4MoHf32

[28] S. Gupta, V. Tolani, J. Davidson, S. Levine, R. Sukthankar, and
J. Malik, “Cognitive Mapping and Planning for Visual Navigation,”
arXiv:1702.03920 [cs], Feb. 2019, arXiv: 1702.03920. [Online].
Available: http://arxiv.org/abs/1702.03920

[29] P. Karkus, X. Ma, D. Hsu, L. P. Kaelbling, W. S. Lee, and T. Lozano-
Perez, “Differentiable Algorithm Networks for Composable Robot
Learning,” arXiv:1905.11602 [cs, stat], May 2019, arXiv: 1905.11602.
[Online]. Available: http://arxiv.org/abs/1905.11602

[30] E. Parisotto and R. Salakhutdinov, “Neural map: Structured memory
for deep reinforcement learning,” arXiv:1702.08360, 2017.

[31] A. Banino, C. Barry, B. Uria, C. Blundell, T. Lillicrap, P. Mirowski,
A. Pritzel, M. Chadwick, T. Degris, J. Modayil, et al., “Vector-based
navigation using grid-like representations in artificial agents,” Nature,
vol. 557, no. 7705, pp. 429–433, 2018.

[32] M. Fortunato, M. Tan, R. Faulkner, S. Hansen, A. Badia, G. Buttimore,
C. Deck, J. Leibo, and C. Blundell, “Generalization of reinforcement
learners with working and episodic memory,” in NeurIPS, 2019.

[33] G. Wayne, C.-C. Hung, D. Amos, M. Mirza, A. Ahuja, A. Grabska-
Barwinska, J. Rae, P. Mirowski, J. Leibo, A. Santoro, et al., “Unsuper-
vised predictive memory in a goal-directed agent,” arXiv:1803.10760,
2018.

[34] X. Ma, P. Karkus, D. Hsu, W. S. Lee, and N. Ye, “Discriminative
particle filter reinforcement learning for complex partial observations,”
arXiv:2002.09884, 2020.

[35] L. Moro, A. Likmeta, E. Prati, and M. Restelli, “Goal-Directed
Planning via Hindsight Experience Replay,” Sept. 2021. [Online].
Available: https://openreview.net/forum?id=6NePxZwfae

[36] J. von Oswald, C. Henning, J. Sacramento, and B. F. Grewe, “Con-
tinual learning with hypernetworks,” arXiv:1906.00695, 2019.

[37] P. Anderson, A. Chang, D. S. Chaplot, A. Dosovitskiy, S. Gupta,
V. Koltun, J. Kosecka, J. Malik, R. Mottaghi, M. Savva, and A. R.
Zamir, “On evaluation of embodied navigation agents,” 2018.

[38] D. Horgan, J. Quan, G. Barth-Maron, and M. Hessel, “DISTRIBUTED
PRIORITIZED EXPERIENCE REPLAY,” p. 19, 2018.

[39] Z. Huang, F. Liu, and H. Su, “Mapping state space using landmarks
for universal goal reaching,” in NeurIPS, 2019, pp. 1940–1950.

http://lfzhao.com/map-nav
http://www.nature.com/articles/nature14236
https://www.ijcai.org/proceedings/2017/700
http://arxiv.org/abs/1806.06408
http://arxiv.org/abs/1806.06408
http://arxiv.org/abs/2206.03674
https://openreview.net/forum?id=PYbe4MoHf32
https://openreview.net/forum?id=PYbe4MoHf32
http://arxiv.org/abs/1702.03920
http://arxiv.org/abs/1905.11602
https://openreview.net/forum?id=6NePxZwfae

VII. APPENDIX OVERVIEW

We provide additional details in the appendix, including
additional description of our approach, experimental setup,
and experimental studies.

(Section VIII) We introduce the details of n-step rela-
belling, joint training, and implementation of hypermodels.
(Section IX) We also explain our computation of SPL metric
and the methods we compare with. (Section X) We provide
additional results in training and generalization, including
the results of [39] (map-planner). (Section XI and
XII) We give a more complete study of robustness of our
method compared to a manually-designed method, including
additional visualization of the trajectories.

VIII. FURTHER ALGORITHM DETAILS

A. Details of n-step Relabelling

As shown in Figure 8, we sample a trajectory of experience
(cT , {st, at, rt, st+1}t) on a specific map and goal cT =
(mT , gT) from the replay buffer. Observe that, if the agent
does not reach the goal area SG (a 100 × 100 cell in the
agent space denoted by a coordinate gT on the abstract 2-D
map), it will only receive reward rt = −1 during the entire
episode until timeout. In large maps, this hinders the agent to
learn effectively from the current map mT . Even if the agent
partially understands a map, it would rarely experiences a
specific goal area on the map again.4 This is more frequent
on larger maps in which possible navigable space is larger.

We adopt a multi-step strategy motivated by single-step
HER, by relabelling failed goals to randomly sampled future
states (visited area) from the trajectory. To relabel the task-
conditioned bootstrapped n-step return, there are three steps.
(1) Goal. Randomly select a reached state st ∈ R12 from
the trajectories, then take the 2-D position (x, y) ∈ R2 in
agent world and convert it to a 2-D goal support grid gTS .
Then, relabel the goal in task context cTS = (mT , gTS),
keeping the abstracted map and start position unchanged. (2)
Reward. Recompute the rewards along the n-step segment.
In episodic case, we need to terminate the episode if the
agent can reach the relabelled goal area gTS , by marking
”done” at the certain timestep or assigning zero discount
after that step γt = 0 to mask the remaining segment.
(3) Value. Finally, we need to recompute the bootstrapping
task-conditioned value vTSn , πTSn = gθ(st, cTS). Empirically,
this strategy significantly increases the efficiency of our
multi-task training by providing smoothing gradients when
sampling a mini-batch of n-step targets from successful or
failed tasks. It can also be applied to other multi-task agents
based on n-step return.

B. Jointly Training Hypermodels

In the off-policy implementation, since we need to sample
a mini-batch of trajectories, we have a batch of different
contexts [c1, c2, ..., cn] during multi-task training, and need

4In our extremely low data regime, the agent only has one start-goal pair
on a small set of map. While on low data regime, the agent can train on
randomly sampled pairs on the maps. See the Setup for more details.

to generate a batch of weight [φ1, φ2, ..., φn] to compute
each mini-batch gradient. To efficiently implement this, it
is beneficial to use batch matrix multiplication in com-
puting [φ1, ..., φn] = hψ([c1, ..., cn]) and [s′1, ..., s

′
n] =

f([s1, ..., sn] , [a1, ..., an] ; [s1, φ2, ..., φn]) on a batch of ran-
domly sampled transitions on different maps.

C. Additional Details of Hypermodels

We assume input is M -dimensional vectors in a mini-batch
of size B, i.e., input tensor is RB×M . The main network
is a MLP with hidden units Li in layer i. We denote the
input as layer 0, i.e., Li = M . Thus, the weight matrix
from layer i − 1 to layer i has size Wi ∈ RLi−1×Li . We
assume the task context is Z-dimentional and in a mini-
batch of input each has a different task context associated
with it, i.e., input tensor to the hypermodel is in RB×Z . The
hyperwork is also a MLP with hidden units Ki in each layer.
The last hidden layer outputs a tensor B × N , where N is
the dimension of output embedding for generating weights
of the main network. The final generation layer has multiple
branches. For generating weight tensor Wi ∈ RLi−1×Li of
the main network for all task contexts, the branch outputs
multi-task weight tensor B×Li−1×Li and thus the mapping
hout : B × N → B × Li−1 × Li has weight tensor with
dimensions N × (Li−1 × Li).

D. Architecture of Implementation

Aiming at fair comparability of our method MAH with
the model-free method MAH, we implement them in a
unified framework. Both ours (model-based) and model-free
baselines have N actor workers, a single learner, and a
centralized buffer worker. Each actor worker has a copy of
the environment instance running single-threaded and take
actions using either MCTS or a Q-network.

IX. EVALUATION DETAILS

A. Evaluation Metric: SPL

We used SPL (Successful Path Length) metric [37] as
a measure to compare and validate the performance of
our algorithm. In the computation of SPL, it requires the
optimal path length. However, it is non-trivial to compute
the length in agent’s environment, since it is continuous
and requires motion planning with kinedynamic constraints.
Instead, we estimate the (approximate) SPL metric on the
agent’s environment in terms of number of steps travelled in
the real world.

The shortest path length was estimated by mapping the
distance travelled in the abstract map (in number of cells) to
the agent’s world (in steps), thus we can avoid to determine
the shortest path directly in the agent’s world. Instead,
We can estimate the shortest path in a 2D abstract world
(where we call it landmark oracle) by using known optimal
path algorithms like Dijkstra’s Algorithm, A*, etc. Once we
obtained the data of distances in both the environment and
the map by manually selecting near-optimal trajectories from
MMN, we developed a linear regression to determine the
dependency relationship. The selected trajectories are closed

Fig. 8: For completeness, we also include the same figure here. We use yellow or circles to indicate predicted states or other quantities,
and grey or squares from actual interactions. (Left) Inference: search with learned model. Applying MCTS with hypermodel to search
for behavioral policy and value, and act with a sampled action. (Right) Training: building learning targets. Computing targets and
backpropagating from loss. The blue line indicates n-step relabelling. We only illustrate backpropagation for one reward node for simplicity.
The solid red line shows the gradient flow from auxiliary model loss to the meta-network’s weight ψ. The dashed red line is the gradient
from task loss.

to optimal, but the approximate SPL can also be viewed as
an upper bound of optimal length or normalized performance
(even our estimate is not accurate). Upon solving the linear
regression, we got,

De = 2.090×Da, (5)

where De is distance (number of steps) travelled in agent’s
environment, and Da is the path length in 2D abstract map.

Thus, the (approximate) SPL metric is given by

1

N

N∑
i=1

Si
li

max(pi, li)
, (6)

where li is (estimated) shortest path length, pi path length of
some algorithm, and Si success percentage. The SPL value
is within the range [0, 1].

Hence, we call this metric as approximate SPL. Higher
(approximate) SPL means better performance.

B. Details about Compared Methods

We compare our model-based approach against two
model-free baselines and other methods, as introduced in
the main paper. More details are available in the extended
version [1].

1) Map-conditioned Multi-task Navigator (MMN), model-
based. Our map-conditioned planner based on MuZero
and improved with n-step HER and multi-task training.

2) Map-conditioned Ape-X HER DQN (MAH), model-
free. A reactive baseline based on Ape-X DQN [38]
and single-step HER [8], conditioned on map and goal.

3) Single-task Ape-X HER DQN (DQN†), model-free,
based on Ape-X DQN [38] and single-step HER [8].
No task context c (map or goal) as input.

4) Hand-crafted planner. In the experiments of Section V-
D, we create a planner with deterministic path planning

and reactive navigation, to study robustness to noise in
the abstract map and in localization.

5) Random, a reference of the navigation performance.
In the implementation, we keep all components of MMN

and MAH the same as much as possible, except that MAH
only has a map-conditioned reactive policy network but no
hypermodel. We use similar architecture for the Q-value
network Q(s, a, cT), which is also conditioned on abstract 2-
D maps and goals, as the policy and value prediction network
gθ(s, cT) in our method. The task input to DQN† has been
further masked, so the Q-value network is simply a single-
task version Q(s, a).

Thus, the main difference between our model-based ap-
proach MMN and the multi-task model-free variant MAH
is that MAH entangles transfer on the map (dynamics) and
goal (reward) levels, since the Q-value network needs to
generalize value prediction jointly on different latent states
s, goals g, and abstract 2-D maps m.

X. ADDITIONAL RESULTS

A. Discussion of Other Baseline

In the main paper, we describe a few algorithms we
are comparing against with. In this section, we additionally
provide an algorithm and its results. It needs different setup,
so we include it here.

The [39] (map-planner) algorithm uses DQN with
HER and sampling transitions from a sub-sample space. It
was considered as one of the baselines to compare our model
against but it had the following challenges.

We can only train each model on one map, whereas our
model can train to do multi-task training on multiple maps. In
order to make the map planner generalize on different maps
we need to train each model on each of the maps, create
a replay buffer for each map for evaluation and then use

2 4 6 8 10 12 14
Distance on Abstract Maps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
cc

es
s P

er
ce

nt
ag

e

Local Navigation
Method

map-planner-13

2 4 6 8 10 12 14
Distance on Abstract Maps

200

300

400

500

600

700

Av
g.

 T
ra

je
ct

or
y

Le
ng

th

Local Navigation

Method
map-planner-13

Fig. 9: Map Planner local navigation evaluation performance on
13× 13 maps for different distances between start and goal, from
1 to 15. (Left) Success Percentage, (Right) Average Trajectory
Length.

an ensemble of agents to predict the actions in an unseen
environment. Thus, this method is inefficient and hard to
generalize on and is not a zero-shot learning paradigm.

In contrast, our method learns a hyper-model that can gen-
eralize to novel map environments in zero-shot. This method
although can take goal as input, but in a different map,
it can only rely on local goal-conditioned value estimation
(estimating the distance) to build a graph for each map, and
plan on the graph.

B. Local Zero-shot Transfer on Larger Maps

We also evaluated MMN on larger maps from 15× 15 to
21× 21. We tested the zero-shot transfer performance on 20
unseen maps of corresponding sizes and generated start-goal
pairs with distance [1, 15]. As shown in Figure 13 (Right),
even though training performance is similar among varying
sizes (not shown), zero-shot transfer on novel larger maps
becomes increasingly harder, which shows the difficulty of
learning directly from abstract 2-D maps.

C. Multi-task Training Performance

We demonstrate some representative results of the training
performance of MMN and MAH. First, we compare the
training on 20 of 13 × 13 maps with randomly generated
goals at each episode, which is the most widely used training
setting in our transfer evaluation. In Figure 10 (a), our
model-based version MMN is much more sample efficient
than the reactive MAH. There are two potential reasons:
(1) model-based method is usually more sample efficient
demonstrated in many single-task environments, and (2) our
MMN is able to share knowledge between local patterns via

(a) Comparison of MMN and MAH

(b) Comparison on map sizes

Fig. 10: Multi-task training performance of MMN and MAH.

Fig. 11: Ablation study of n-step relabelling.

the hypermodel. We also show the training results on larger
map sizes with local start-goal pairs [1, 5] in Figure 10(b).
Although we found the evaluation performance decreases on
larger maps, the local training performance w.r.t. episodes
is similar. We include more results in the supplementary
material.

We also study the ablation of n-step relabelling in Figure
11 in a special fixed goal setting on a 13 × 13 map. With
the relabelling, our method is able to get signal earlier and
learn faster.

D. Ablation Studies of Transfer Performance

a) Ablation study on evaluation hyperparameters.: We
study two related hyperparameters in the zero-shot transfer:
(1) number of simulations, where we change it to 30 from
100, and (2) temperature in action sampling, which is set
to 0.1 from original value 0.25. We use one random goal
for distance [1, 15] on 20 of 13 × 13 maps. In Figure 12,
we found decreasing number of simulations and increasing
deterministicity do not produce significant difference.

b) Transfer with few-shot adaptation.: To examine if
zero-shot transfer still have any room of improvement, we

2 4 6 8 10 12 14
Distance on Abstract Maps

0.2

0.4

0.6

0.8

1.0
Su

cc
es

sf
ul

 R
at

e
Evaluation Setting
MMN-Temperature=0.1
MMN
MMN-#Simulations=30

Fig. 12: Ablation study of different hyperparameters in evaluation.

also experiment on finetuning on same maps with different
goals. Suprisingly, we found finetuning on novel maps does
not result in improved performance. However, it is under-
standable since we have fully trained the agents during multi-
task training, and the amount of data and learning steps
in finetuning is insignificant compared to the training stage
(about 105 vs. 103 steps, and 105 vs. 102 trajectories). We
leave the further study of few-shot adaptation with abstract
maps for future work.

XI. ADDITIONAL STUDIES OF ROBUSTNESS

We provide a complete version of Section V-D, by con-
sidering three components in map-based navigation.

To further study the robustness of our method and the
importance of each component, we considered breaking three
components in closed-loop map-based navigation: Map – (1)
→ Path – (2) → Environment – (3) → Map (repeat). In
general, our learning-based agent is robust to these changes.

To illustrate difficulty of the problem, we considered a
baseline strategy (hand-crafted deterministic planner) based
on perfect information of the environment (e.g. can plan
on map) for comparison correspondingly: (1) known perfect
maps and intermediate landmarks, (2) scaling factor (unavail-
able to MMN), and (3) world position on map. Since we
assume that it has perfect localization and landmarks, the
key step is to reach a landmark given current location, which
consists of several procedures: (a) change the orientation to
the target landmark, (b) move forward along the direction,
and (c) stop at the target cell as soon as possible.

A. Perturbation 1: Planning

For planning, we try to break the implicit assumption
of requiring perfect abstract map information. We adopt
the hierarchical navigation setting, but generating subgoals
on perturbed maps, where some proportion of the map’s
occupancy information is flipped. In Table I, we see that
as the perturbation level increases, MMN’s performance
gradually decreases, but it can still navigate successfully with
significant noise levels.

We use the flip strategy to perturb with a probability of
20% on randomly bit-flipping a block (from 0 to 1 or vice
versa) and evaluate in the hierarchical navigation setting.

We try two different strategies for applying our algorithm:
(1) generating landmarks on perturb map (flip, 20%) of
distance 5, (2) a more path following like setting with
landmark distance 1. In both settings, we input perturbed
maps to the agent.

We show the result in Table I. The local path following
(landmark distance 1) is less unstable than longer landmark-
level hierarchical navigation. (We use landmark distance 1
to simulate the path following setting.) Both of them show
significant degeneration of performance compared to our
algorithm with tolerance to the map perturbation. So, our
learning-based method is robust to the map topology changes
and inaccuracy.

B. Perturbation 2: Localization

For localizing, we break the identifiability of agent po-
sition (a part of its joint state) by applying random noise.
We aim to show that our learned agent does not rely on the
position to understand the map, since providing position in
the agent world has no relation with localizing on abstract
maps and our learning-based method can adapt to the noise.
As shown in the Figure 5, MMN had minimal performance
drop, compared to a drastic performance drop for the baseline
strategy.

We apply additive Gaussian noise (alternative: additive
uniform noise) to the position of the joint state, where the
mean is 0 and the standard deviation is 1 unit (one block on
abstract map, 100× 100 in agent’s world). We use the same
setting and maps as the local transfer experiment (Section
4.2) by comparing the planner on unseen 13×13 maps from
distance 1 to 15. This experiment is to study the effects of
implicit localization on maps. Results are shown in Figure 14
(Left) and (Middle).

C. Perturbation 3: Action Mapping

For action mapping, we break the implicit requirement of
known scaling between map and environment. We provide
the agent with randomly transformed maps, where the ratio
(in both x and y directions) is different. Our experiments in
local navigation showed that our agent does not rely on this
knowledge or any perfect relation.

Our method also does not depend on the knowledge of the
relationship between abstract maps and agent environments.
We also try to break this relation, by applying some random
(spatial) transformations on the map. Different from manipu-
lating pixel values, we apply spatial transformations, such as
perspective transformation. Results are shown in Figure 14
(Right).

D. Perturbation of Top-down Map Input

To further study the importance of the abstract map input,
during evaluation on 13 × 13 maps, we perturb the task
context input c = (m, g) and provide an disrupted version to
agents. We examine several perturbation strategies: zero, flip,
shuffle, and original accurate map input. (1) In zero mode, we
give a tensor of zeros as abstract map and start/goal inputs
to agents. In this case, the model may malfunction and rely

on its policy and value prediction function to provide rough
estimations. (2) In shuffle mode, we sample another map and
start/goal pair within the set of evaluation maps. Thus, the
entire structure should be entirely different and may largely
affect the decision. (3) In flip mode, we randomly change
the value of a cell with probability p = 80% (from wall
to navigable space or vice versa). Note that flipping only
changes the map m but not the goal g, thus the agent can still
capture a rough direction in local navigation. We evaluate on
distances between 1 and 8.

As shown in Figure 13 (Left), shuffle has the largest
effect to the performance, since randomly choosing another
map not only changes the map input m′ to the agent,
but also provides a misleading goal g′. Providing a zero
map/goal has the second largest performance drop, since
it does not mislead the agent with wrong map or goal,
but does not provide the information that is necessary to
complete the task without further learning and exploration.
This demonstrates that both MMN and MAH are relying
on the abstract map and start/goal input to do zero-shot
navigation effectively. Surprisingly, the flip strategy turns out
to have little performance decay. The reason for this may
be that only the map is flipped, and since we evaluate on
local start-goal pairs with distance [1, 8], the flipping may
not greatly affect the path connecting start-goal pairs, and
the agent can rely on the unperturbed goal to navigate in the
correct direction for short distances.

XII. FURTHER ABLATION STUDIES OF PERTURBATION
SETUP

We performed a series of evaluation to test the perfor-
mance of our model in different scenarios. The scenarios
were chosen to test its generalization over unseen maze
layouts. The experimentation constitutes two major phases
the hierarchical and the local navigation tasks. In each task,
to check if the agent is really following the map which is
being given as input, we test the agent in perturbed maps
and perturbed state space (uncertainty in the world).

The evaluation of the model was performed on 2 settings:
1) Hierarchical setting where the whole map of the task is

divided into smaller tasks with sub goals generated to
emulate the start and goal pairs of that small problem;

2) Local setting or the whole map.
Majority of the efforts spent on finding and choosing the

right hyper-parameter to test the model and vary them to see
the behavior of the agent in a given task (map + start and
goal pairs).

The following section shows the results obtained through
experimentation and shown are some of the optimistic runs of
the model for each configuration. The images mainly consists
of blue grids depicting the obstacles represented in the 2D
occupancy grid, white grid representing the pathways where
the agent can traverse, yellow/green the starting point and
pink or grey as goals or sub-goals. The blue dots are agent
location corresponding to the actual 3D environment and
blue lines show the trajectory of the agent.

A. Hierarchical Navigation Evaluation
In hierarchical navigation, the agent must pass through all

the landmarks (grey grid) to achieve the optimal path length.
The start is always the grid in the top right corner and goal is
always the bottom left corner. The landmarks are generated
by Dijkstra’s algorithm and based on the user’s input distance
between landmarks. We use the notations below.
• Ld – Distance between Landmarks
• LT – Trajectory Length
• SP – Success percentage =

Number of times the agent reached the goal
Total number of times experiment performed over different maps

• Std – Standard deviation of the Gaussian noise (σ)
• MS – Max number of steps
For consistent representation, we use a specific 13 × 13

map to visualize all the trajectories.
1) No Perturbation: The Figure 15, shows the perfor-

mance of the agent when there is no perturbation and
for different distance between the sub-goals (but constant
throughout a task).

The results suggests that the agent has learned to gener-
alize well for different distance between the sub-goals from
its success rate. Another interesting note is that lesser the
distance we expected a shorter trajectory but instead Ld =
1,3 has LT more than when Ld = 5. This could be because
the agent could be going faster and might have overshot the
nearby landmark and must travel back.

2) Map Perturbation: The Figure 16, shows the perfor-
mance of the agent when there is a perturbation to the map
with a ratio of 0.2 and for different distance between the
sub-goals (but constant throughout a task).

The violin plot 17, suggests that more the perturbation
ratio, longer the trajectory lengths are. This also confirms
the fact that agent is indeed dependent on the map input
and the learning is utilized well. If there were some issues
with this relationship, it could hint that agent is not utilizing
the map properly. In that case, we might need to debug the
training strategy.

3) Localization Perturbation: The Figure 18, shows the
performance of the agent when there is perturbation to the
state vector of the agent in the actual 3D environment and
for different distance between the sub-goals.

The violin plot 19, is quite interesting to look at. The
pattern is aligning with what we expected, which is more
the noise longer the trajectory length and lesser the SPL. The
images show the expected behavior in a particular 13 × 13
map.

4) Max Steps: Here, the Ld = 5, is kept as constant for
effective comparison of this hyper-parameter.

The violin plot 21, suggests max steps of 25 and 50 are
good bets for evaluation. The standard deviation of step 25
is a good sign of consistency. We can try to incorporate 2
versions in training, currently it is 50 max steps.

B. Local Navigation Evaluation
In Local navigation, the agent must have to reach the goal

from start in an optimal way. The start and goal are randomly
generated. There are no landmarks.

1 2 3 4 5 6 7 8
Distance on Abstract Maps

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s R
at

e

Mode
original
zero
flip
shuffle

Method
MMN
MAH

2 4 6 8 10
Distance on Abstract Maps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

size
15
17
19
21

Fig. 13: (Left) Study of performance on different perturbation strategies. (Right) Performance on larger maps.

2 4 6 8 10
Distance on Abstract Maps

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc

es
sf

ul
 R

at
e

Method
MMN (Perturbed Position)

2 4 6 8 10
Distance on Abstract Maps

10

20

30

40

Su
cc

es
s T

ra
je

ct
or

y
Le

ng
th

Method
MMN (Perturbed Position)

2 4 6 8 10
Distance on Abstract Maps

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Mode
flip
perspective

Method
MMN

Fig. 14: (Left) Success rate and (Middle) successful trajectory length on local navigation with noisy position information. (Right) Success
rate on local navigation with perturbed action mapping.

Fig. 15: Hierarchical No Perturbation

• Ld – Distance between Start and Goal
• SP – Success percentage =

Number of times the agent reached the goal
Total number of times experiment performed over different maps

• Std – Standard deviation of the Gaussian noise (σ)

For consistent representation, we use a specific 13×13 map

Fig. 16: Hierarchical Map Perturbation

to visualize all the trajectories.
1) No Perturbation: The Figure 22, shows the perfor-

mance of the agent when there is no perturbation and for
different distance between the start and goal.

The above images confirm our theory that even though the

0.0 0.1 0.2 0.25 0.3 0.4 0.5
Flip Ratio

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
SP

L

Fig. 17: Violin Plot of SPL for different perturbation ratios. The
figure clearly explains the impact of map perturbation ratio on the
SPL metric. More the noise lesser the SPL gets.

Fig. 18: Hierarchical Local Perturbation

agent has learnt to generalize well for different distances of
start-goal pairs, for distances larger than the one seen during
training it might struggle. That is why the success rate in Ld
= 8 is lesser than the others.

2) Localization Perturbation: The Figure 23, shows the
performance of the agent when there is perturbation to the
state vector of the agent in the actual 3D environment and
for different distance between the sub-goals.

The Figure 23, goes well with the hypothesis that more
the noise to the state vector longer the trajectory length and
the agent struggles to navigate freely.

C. Deterministic Planner

This deterministic planner is a simple agent that follows
the landmarks in a straight path at a slow pace (velocity in
3D environment). This agent can serve as an intermediate
benchmark for our models and still can be optimized using

0 10 20 30 50 100
Noise Std

0.25

0.00

0.25

0.50

0.75

1.00

1.25

SP
L

Fig. 19: Violin Plot of SPL for different perturbation standard
deviation of noise. The figure clearly explains the impact of
perturbation of the state vector on the SPL. More the noise lesser
the SPL gets.

Fig. 20: Different Max Steps

motion planning algorithms with Kino-dynamic constraints
to obtain an optimal trajectory for SPL metric calculation.

The Figure 24, we were experimenting with different step
sizes to see on which case the agent takes the shortest
(optimal) path to the goal. Here step size is the rate at which
the agent moves in the 3D environment. The smaller the
step size slower it is travelling and larger the step size faster
it travels. We found step size 3 seems to produce optimal
results hence used it for the rest of analysis. The Figure 25,
deals with same step size but different distance between
the landmarks. This agent also struggles to navigate when
distances are large (> 5).

1) Map Perturbation: The Figure 26, suggests that the
agent does not care about the abstract map. This is because,
the agent interacts with the deep mind lab environment
directly and with the inputs from the environment itself
(like interacting with the OpenAI Gym environment). Hence,

25 50 75
Max Steps

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50
SP

L

Fig. 21: Violin Plot of SPL for different max-steps to reach the
sub-goal. The figure clearly explains the impact of max-steps on
the SPL. The optimal max-steps is 50 which produces more SPL.

Fig. 22: Local No Perturbation

perturbation really will not affect it. Hence, we might need a
deterministic planner that interacts with the abstract 2D map
for a more realistic comparison.

2) Localization Perturbation: The figures 27 and 28,
suggests that the agent is severely affected by the noise added
to the state vector. This is again because the agent is directly
interacting with the 3D environment, because of which it is
struggling a lot when the only perception is perturbed.

D. Notable Behavior

The above image is an interesting behavior observed in
the hierarchical navigation with no perturbation. The agent
seems to work fine by passing through all the landmarks
when the landmarks are scattered in the ‘L’ shaped pattern.
Otherwise, the agent misses few landmarks but eventually
reaches the end goal. This could be because of the training
phase when the distance between landmarks are closer (≤ 5)
and most of the times they would be in a straight line.

Fig. 23: Localization Perturbation - Std = 100

Maybe having more complex paths and longer distances
during training phase might alleviate this behavior.

Fig. 24: Deterministic Planner - No Perturbation - Step Size Tuning

Fig. 25: Deterministic Planner - No Perturbation - Different Ld

Fig. 26: Deterministic Planner - Map Perturbation

Fig. 27: Deterministic Planner - Localization Perturbation - Std =
50

Fig. 28: Deterministic Planner - Localization Perturbation - Std =
100

Fig. 29: Notable Behavior

	Introduction
	Related work
	Problem Statement
	Learning to Navigate using Abstract Maps
	Task-conditioned hypermodel
	Planning using a learned hypermodel
	black n-step Goal Relabelling: Denser Reward
	Joint optimization: Multi-task Value Learning

	Experiments
	Experimental setup
	Zero-shot local navigation in novel layouts
	Hierarchical navigation in novel layouts
	Robustness to map and localization errors

	Conclusion
	References
	Appendix Overview
	Further Algorithm Details
	Details of n-step Relabelling
	Jointly Training Hypermodels
	Additional Details of Hypermodels
	Architecture of Implementation

	Evaluation Details
	Evaluation Metric: SPL
	Details about Compared Methods

	Additional Results
	Discussion of Other Baseline
	Local Zero-shot Transfer on Larger Maps
	Multi-task Training Performance
	Ablation Studies of Transfer Performance

	Additional Studies of Robustness
	Perturbation 1: Planning
	Perturbation 2: Localization
	Perturbation 3: Action Mapping
	Perturbation of Top-down Map Input

	Further Ablation Studies of Perturbation Setup
	Hierarchical Navigation Evaluation
	No Perturbation
	Map Perturbation
	Localization Perturbation
	Max Steps

	Local Navigation Evaluation
	No Perturbation
	Localization Perturbation

	Deterministic Planner
	Map Perturbation
	Localization Perturbation

	Notable Behavior

