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Votivation



You might have used planning in

Board games, e.g., Chess

Robot Manipulation /
Control Arm

Robot Navigation

(a) Development of diagonal (b) Fully developed diagonal (c) Count of opponent’s potential (d) Potential good squares to
moves for player (block 1, factor  moves for opponent (block 3, piece moves (block 3, factor 11 move to? (block 18, factor 22 of
26 of 36). factor 22 of 36). of 36). 36).
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Some names related to planning

- path planning

- motion planning

. task planning

- model predictive control

« model-based RL
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Example — Go game

Planning can help us find best sequence of actions through search over the action space

a Selection b  Expansion c Evaluation d Backup

2 ? T ak:
Q + u(P) max Q + u(P)

O | 4+ o 1éd T T | 0@
e ofet o I L2 I
| | | P | P /I %

Q + u(P) Knax Q + u(P)

e W @D W R

"3 I
CONNE
Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation is evaluated in two ways: using the value network vy; and by running
traverses the tree by selecting the edge with maximum action value Q, a rollout to the end of the game with the fast rollout policy p-, then
plus a bonus u(P) that depends on a stored prior probability P for that computing the winner with function r. d, Action values Q are updated to
edge. b, The leaf node may be expanded; the new node is processed once track the mean value of all evaluations r(-) and vy(-) in the subtree below
by the policy network p, and the output probabilities are stored as prior that action.

probabilities P for each action. ¢, At the end of a simulation, the leaf node
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Example — Mobile Manipulation

| want to practice . o
sweenlng ':he toys Plannmg to Practlce Sweep(., w,l ) Pctlcmg Sweep(®, -2,-,047)

B~

Dump (&=, 6,) Pick( &k, 8;)

plaCE(.‘:—,}y o ’ 98)

Place(®, ™, q,)

piCk(ﬁ-}c, 8,)

Think over long-horizon

Need planning!
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Why do we need planning?

>

,‘
\

3

For e.g., solving —
long-horizon tasks! e

. . 1 ]
W alen phece comdnate & it Press 110an) be vhew e servialed peth

| want to practice .« s
sweeping l:he toys Plann'ng to Practlce SweeP(.J =% JJ- ) Practlcmg Sweep(., naty by 911)
| i 3> ] T - 5 T

B~Y

Dump (—, 8,) Pick( ., 8;)

Place(®,®, 8,) Pick(ess, 8,) Place(.,., ®,8,) Pick( L ,8,) MoveTo(M, 9.,)
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Planning is great, but...

Existing planning algorithms normally operate on either well engineered state features
and action representations and are specialized for them

o Discrete: e.g,. graph search, task planner

o Continuous: e.g., model predictive control

However, these features are normally hand crafted, which would struggle to scale up

o e.g., discrete graph nodes or continuous vectors

Can planning algorithms handle complex tasks high-dimensional raw input?
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Why need learning tor planning?

Reason 1 — Approximate complex functions from training data and generalize

o E.g., learning features from raw observations, learning transition functions

Reason 2 — Scaling up with more compute and data — Better planning performance

o Scaling laws / The bitter lesson — algorithms that can use compute eventually take over
o Learning and Search/Planning are two major types of examples

o Well integration of learning with planning helps planning to scale up to more challenging
and longer-horizon tasks

(And so on)
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Outline

Goals and Motivation

Basics of Planning

The Role of Learning in Planning

Planning Algorithms & Integration with Learning
Case Study: Mobile Manipulation

Takeaways
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Basics of Planning



What is planning?

A (learned) state space R > [¢7 >
|
A (learned) transition model (world model) f
p0, 0 ‘p
« M = (P,R) — P(s"| s,a) is transition dynamics, e
R(s, a) is reward function N £
pLv' «f
aZ
. Or deterministic case: s',r = F(s,a) \
pQ,v?<-f
Objective of planning &
g
- 1, Maximize reward/utility function, or minimize cost pg)vgdés
» 2, Reach goal region [Credit: MuZero, DeepMind]
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1. Planning in RL / Optimal Control

e/ d f\ \ [
m Model-Free RL s
m No model —
m Learn value function (and/or policy) from experience roward Tﬁ,

m Model-Based RL

m Learn a model from experience
m Plan value function (and/or policy) from model

Lecture: Integrated learning and planning. David Silver, 2015.
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What is a model here

m A model M is a representation of an MDP (S, A, P, R),
parametrized by 7

m We will assume state space S and action space A are known

m So a model M = (P,,R,) represents state transitions
Pp =P and rewards R, ® R

St+1 ~ Pp(St+1 | St, At)
Rit+1 = Rp(Rex1 | St, At)

Lecture: Integrated learning and planning. David Silver, 2015.
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Example: Learning a table lookup model

Two states A, B; no discounting; 8 episodes of experience

A,0,B,0
B, 1

»

»

\»

> W W W W W

\»

.
I e e T e T

We have constructed a table lookup model from the experience

Lecture: Integrated learning and planning. David Silver, 2015.
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Planning with the learned model

m Given a model M, = (P, R,)

m Solve the MDP (S, A, P,, R,,)

m Using favourite planning algorithm

m Value iteration
m Policy iteration
m [ree search

m ..

[Credit: MuZero, DeepMind]
Lecture: Integrated learning and planning. David Silver, 2015.
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Does it work? Yes|

* Essentially how system identification works in classical robotics
* Some care should be taken to design a good base policy

* Particularly effective if we can hand-engineer a dynamics representation
using our knowledge of physics, and fit just a few parameters

Lecture: Optimal Control and Planning & Model-based RL. Sergey Levine, 2017.
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Does it work? No!

L. run base policy m(az|s;) (e.g.. random policy) to collect D = {(s,a,s");}

2. learn dynamics model [(s.a) to minimize Y || f(s;, a;) — s/||*

3. plan throngh f(s.a) to choose actions

Drj(St) 7# P (St)

* Distribution mismatch problem becomes exacerbated as we use more
expressive model classes

Lecture: Optimal Control and Planning & Model-based RL. Sergey Levine, 2017.
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The deterministic case

T

dl,...,.A7p = arg alIIl‘cl);T Z ’(‘(St, at_) S.t. At ] — f(St, at)
""" t=1

Lecture: Optimal Control and Planning & Model-based RL. Sergey Levine, 2017.
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The stochastic open-loop case

ai,...,ar = argalmc >§TE Zr(st,atﬂal, c..,ar

Lecture: Optimal Control and Planning & Model-based RL. Sergey Levine, 2017.
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Aside: terminology

what is this “loop”?

closed-loop open-loop

only sentatt=1,
then it’s one-way!

Lecture: Optimal Control and Planning & Model-based RL. Sergey Levine, 2017.
Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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2. Planning in classic AI community

— —~ ’

Classical Planner

Goal

S T —" OnTop(book2, shelf)

(e m piy) Reachable(bookl) Reachable(bookl) Reachable(shelf) Reachable(shelf) :
: Reachable(book2) Holding(book2) Holding(book2) OnTop(book2, shelf) ||

: Reachable(book3) Reachable(book3) Reachable(gamel) Reachable(gamel) :

| |

| :
Sol|, """ """ *| Sy | *| S |t *| S3 | e -+ | S4 ;
s '\\ Move(book2) Grasp(book2) Move(shelf) PlaceOntop(book2, shelf) ,

T SR SRR R R SRR R R R R R SRR R WRR R R R R R R R R R SRR R R SR R R R TR R R R R R W R SR R R R R R W R R R R R SRR R R R R R R R R SRR R R R R R R R R R R R e e e e

Abstract

Al planners have been developed over decades: STRIPS, PDDL, ...

States are object-centric relational classifiers. Actions are options / operators / skills.

Bilevel Planning for Robots: An lllustrated Introduction. Kumar et al. Blog.
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STRIPS / PDDL

Some formal definition.

Connection between options in RL
and operators in STRIPS has been
studied by George Konidaris:

Konidaris, G., Kaelbling, L. P., & Lozano-Pérez,
T. (2018). From skills to symbols: Learning
symbolic representations for abstract high-
level planning. Journal of Artificial Intelligence
Research.

Planning Algorithms. Steven M. LaValle, 2006.

Formulation 2.4 (STRIPS-Like Planning)

1.
2.

A finite, nonempty set I of instances.

A finite, nonempty set P of predicates, which are binary-valued (partial)
functions of one of more instances. Each application of a predicate to a
specific set of instances is called a positive literal. A logically negated positive
literal is called a negative literal.

. A finite, nonempty set O of operators, cach of which has: 1) preconditions,

which are positive or negative literals that must hold for the operator to
apply, and 2) effects, which are positive or negative literals that are the
result of applying the operator.

An initial set S which is expressed as a set of positive literals. Negative
literals are implied. For any positive literal that does not appear in S, its
corresponding negative literal i1s assumed to hold initially.

. A goal set G which is expressed as a set of both positive and negative literals.

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Abstraction Actions: Operators

Grasp-From-0On-Top

Parameters: | ?7target: obj, ?surface: obj]
Preconditions: [HandEmpty,
Reachable(?target),

OnTop(?target, ?surface)]

Add Effects: [Holding(?target) ]
Delete Effects: [HandEmpty,

Reachable(?target),
OnTop(?target, ?surface)]
Skill: Grasp(?target, [Ax, Ay, Az])

Figure 5: Example operator for grasping from atop a surface. The operator has two arguments (both of type ‘obj): a
target object to pick up, and a surface from which to pick this object. The operator’s associated skill is parameterized
by the discrete target object, as well as three continuous parameters that correspond to a cartesian position in the
object’s coordinate frame at which the robot should attempt to grasp the object..

Bilevel Planning for Robots: An lllustrated Introduction. Kumar et al. Blog.
Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Connection of 2 tormalisms

Connection:

The MDP (state-space representation) in
RL and STRIPS/PDDL in classic Al
planning are closely connected

A STRIPS/PDDL task planning problem
can be converted to state-space
representation, e.g., MDP.

Intuition:

Find (stochastic) shortest path on a
discrete directed graph.

Planning Algorithms. Steven M. LaValle, 2006.

2.4.2 Converting to the State-Space Representation

It is useful to characterize the relationship between Formulation 2.4 and the origi-
nal formulation of discrete feasible planning, Formulation 2.1. One benefit is that
it immediately shows how to adapt the search methods of Section 2.2 to work
for logic-based representations. It is also helpful to understand the relationships
between the algorithmic complexities of the two representations.

Up to now, the notion of “state” has been only vaguely mentioned in the con-
text of the STRIPS-like representation. Now consider making this more concrete.
Suppose that every predicate has k& arguments, and any instance could appear in
each argument. This means that there are |P||I |k complementary pairs, which
corresponds to all of the ways to substitute instances into all arguments of all
predicates. To express the state, a positive or negative literal must be selected
from every complementary pair. For convenience, this selection can be encoded
as a binary string by imposing a linear ordering on the instances and predicates.

Figure 2.21: Another five-state discrete planning problem.

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Basics of Planning: Summary

People in RL / optimal control and people in classic Al planning communities have different
languages and serve for different purposes.

They are closely related while are suitable for different use cases.

Now — switch angle, how learning is helpful in these planning techniques.

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Outline

Goals and Motivation

Basics of Planning

The Role of Learning in Planning

Planning Algorithms & Integration with Learning
Case Study: Mobile Manipulation

Takeaways
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T'he Role of Learning in
Planning



Where does learning come in

1, A (learned) state space

2, A (learned) transition model (world model)
« M = (P,R) — P(s'| s,a) is transition dynamics, R(s, a) is reward function

« Or deterministic case: s', r = f(s, a)

3, Planning algorithm & objective

. actions = Planner(state, goal)

. Objective: 0" = argmax Brp,(r) | Y 7(st,ar)

|t
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1. Learning World Models for Planning

action state action

reward R, reward R,

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Object-centric World Models

Learning the State of the World:
Object-based World Modeling for Mobile-Manipulation Robots

by

Lawson L.S. Wong

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the
Figure 1: Mobile-manipulation robots operating

In human-centric environments must know about,
and be able to model, the world in terms of objects. February 2016

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Compositionality and Object-centric

View: Multi-step World Model Inference

Scene MDPJ Question: How to solve the binding issue?
< 3 J \
1 (v, move right) > [ (<] , move back) — + O 00
R v v
2 2
-
| [ |
: (slot 2, move west) —> : (slot 1, move east) —> 1 ONON®
= 2 2 2 )

Slot MDP

/Zhao et al. Toward Compositional Generalization in Object-Oriented World Modeling. ICML 2022.
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Sora — video prediction

Creatingvidedi‘rom text

¥ Sora’is an Almodel that éan.create realistic and imaginative
scenes from text instructions.

Read technical report

AllVideos on this page were generated diréctly by
Sora without modification.

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Video-language model (for planning

Task Planning o Visual Planning : Action Planning
o Tt43 T Ty ~
Pack computer mouse, | 2 h L+2 t+1 Tt+1 L't
black and blue sneakers, i . , J : w ;
@ | pepsi next box, toy train 1 AR || AR (| AR | A || temeam [T — 1
in brown box | § |
! [teratives Iterative :
Refihement Refihenjent
LLM pemen Diffusion [+ N o
1 Dynamics Envirgnment
. . Place computer : Place computer @+ | Command
' Plape gllrt y b(())b]ect mouse in brown ‘ »| mouse in brown
in blue box T | : bx (LA
Wy, Wr41 ; ; w

Figure 2: Planning with HiP. Given a language goal g and current observation z;, LLM generates next subgoal
w with feedback from a visual plausibility model. Then, Diffusion uses observation z; and subgoal w to generate
observation trajectory 7, with feedback from an action feasibility model. Finally, action planning uses inverse
dynamics to generate action a; from current x; and generated observation z;; 1 (action planning).

“Open microwave, move kettle out of the way, light the kitchen area, and open upper right drawer’

E
Video prediction for next frame  §
¢
With/without actions ——— E———— o on 10 FrT————

microwave to the back stove lights drawer

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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2. Learning Representations for Planning

We want to learn a compact
and abstract representation
of the world

Original transition dynamics

p(s'| s,a)ors’ = f(s,a) may
be too hard to learn

Figure 1.1: The process of abstraction.

A Theory of Abstraction in Reinforcement Learning. David Abel, PhD Thesis 2020.
Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Action Abstraction: Options framework

Options:

: Ti >
Temporally extended actions e

| | MDP /\/\\/ IState
Developed in Semi-MDP
SWOP <N ¢ N\

Options »/\ _
over MDP >,

Reinforcement Learning: An Introduction. Andrew Barto and Richard S. Sutton 2018.
Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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State Abstraction: via State Partition

02 04 o, (8) SE€
O 7To, (S S €
TEU ( S) _ 2( )
03 04’
01 7-[03 (S) S €
T, (S) S€
(a) Assignment of options to each Sp via o » (b) Construction of nlcl) -

A Theory of Abstraction in Reinforcement Learning. David Abel, PhD Thesis 2020.
Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Planning in the abstracted model

o999 B (b
DaPesCa®:
weoow E D

(a) Reasoning in the environment. (b) Reasoning in the abstract.

A Theory of Abstraction in Reinforcement Learning. David Abel, PhD Thesis 2020.
Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Object-centric State Representations

Observation o

Grounding

Extract

Objects

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture

rob
b0
bl
b2
b3
b4

Object-centric
state x

0.63 0.11 0.94
0.74 0.11 0.00
0.75 0.10 0.20
0.50 0.11 0.00
099 0.12 0.00
051 0.11 0.20

0.1
0.1
0.1
0.1
0.1

Abstraction
Abstract Symbolic
(to predicates) state s

OnTable(b2), On(b4, b2)
OnTable(b@), On(bl, be)
OnTable(b3)

40



Abstract Action: Operators/Skills

Used in STRIPS and PDDL:

Classical Planner

Goal

Grasp-From-On-Top & - OnTop(book2, shelf)
Parameters . [ >t d r\get : ObJ ) ) Su Pfa ce. ObJ ] (emp”:Y) Reachable(bookl) Reachable(bookl) Reachable(shelf) Reachable(shelf)
o g o . - Reachable(book2) Holding(book2) Holding(book2) OnTop(book2, shelf)
P recond lt i0ns: [ H an d E m pty ) : Reachable(book3) Reachable(book3) Reachable(gamel) Reachable(gamel)
Reachable(?target), ; - - - -
OnTop(?target, ?surface i
p ( g ) ) ] Sol|i =" *| sy | *| § |===ecccccaa *| §S3 | o= mmmmcccaa - | Sy
Add Effects: [Holding (?tar get ) | + ' Move(book2) Grasp(book2) Move(shelf) PlaceOntop(book2, shelf)
Abstract TS S S mmommommmes
Delete Effects: [HandEmpty,
Reachable(?target),
OnTop(?target, ?surface)]
Skill: Grasp(?target, [Ax, Ay, Az])
Figure 5: Example operator for grasping from atop a surface. The operator has two arguments (both of type ‘obj’): a
target object to pick up, and a surface from which to pick this object. The operator’s associated skill is parameterized Figure 6: Animated visualization of high-level planning with the provided abstractions. We first abstract our initial low-level state
by the discrete target object, as well as three continuous parameters that correspond to a cartesian position in the (x0) into an initial high-level state (s0), then use an off-the-shelf Al planning system to come up with a sequence of ground

object’s coordinate frame at which the robot should attempt to grasp the object.. operators that achieve the goal conditions.

Bilevel Planning for Robots: An lllustrated Introduction. Kumar et al. Blog.
Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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3. Learning Planning Computation

NormO”y we hqve an OlgOrithm to /[ Cook a potato and put it into the recycle bin. ] Embodied Agent &
do planning computation: Environment

Navigation potato, Pickup potato,
...., PutObject potato recyclebin

actions = Planner(state, goal)

This can also be done Navigation fridge, OpenObject fridge,
. . Pickup potato, CloseObject fridge, ....,
approximately via a neural network, PutObject potato recyclebin

e.d., LLM with Transformer: 20

I cannot find a recycle bin, but I saw a
garbage can.

actions = LLM(state, goal)
Navigation garbagecan, i
PutOb]ect potato garbagecan

gl

Song et al. LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large Language Models.
Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Using VLMs to Plan
@ o

Chain-of-Thought

My child wants to play with a Mgrvel a
model, please take one out for him. Task-Related Objects and Locations:
Current Observation - 1. Marvel Model (item to be retrieved) Robot Execution
Vision 2. Pepsi Can (blocking object)
3. Shelf (storage location)
, it Language
e ey
B ™8, & Model Task Plan
(GPT-4V) 3.Pickuppepsican
(VT 4. Place pepsi can on table
Finished Plan ——— 5. Pick up Marval model
1. Pick up paper cup 6. Place Marvel model on table
_
2. Place paper cup on table 7. Done

Add to Finished Plan

Hu et al. Look Before You Leap: Unveiling the Power of GPT-4V in Robotic Vision-Language
Planning. arXiv 2023.

*This paper has been using teleop for real-robot demo

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Section summary

Learning is helpful for various places for planning!
How can we really use them in planning?

Next:
Go over several types of planning algorithms

Analyze why and how learning is helpful

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Outline

Goals and Motivation

Basics of Planning

The Role of Learning in Planning

Planning Algorithms & Integration with Learning
Case Study: Mobile Manipulation

Takeaways

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture

45



Planning Algorithms &
[ntegration with Learning



Overview of planning algorithms

1. High-level / Discrete Space Planning

2. Low-level / Continuous Space Planning

3. Planning in Hybrid Space

Goals:

Go over several types of planning algorithms

Analyze why and how learning is helpful

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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1. High-level / Discrete Space Planning

Al

Blocks World Sokoban Hanoi
Plan length: 28 Plan length: 167 Plan length: 579
Planning time: 0.12 s Planning time: 0.25 s Planning time: 0.22 s

|Credit: Tom Silver]

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Example: MCTS

a Selection

ot

Q + u(P)
A

Les

max
e

Q + u(P)

¢

Q+uP) hmax

Figure 3 | Monte Carlo tree search in AlphaGo. a, Each simulation
traverses the tree by selecting the edge with maximum action value Q,
plus a bonus u(P) that depends on a stored prior probability P for that

b  Expansion

P

P

|
P

Q + u(P)

¥

-(#1)

/' N\

::$—; ——%}0

P

¥

Evaluation d Backup

1 f
T SE - S ADE

is evaluated in two ways: using the value network vp; and by running
a rollout to the end of the game with the fast rollout policy p, then
computing the winner with function r. d, Action values Q are updated to

edge. b, The leaf node may be expanded; the new node is processed once track the mean value of all evaluations r(-) and vy(-) in the subtree below
by the policy network p, and the output probabilities are stored as prior that action.
probabilities P for each action. ¢, At the end of a simulation, the leaf node

Related algorithms: AlphaGo, AlphaZero, MuZero — from Google DeepMind.

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture

49



Example: PDDL Planning

Classical Planner

Reachable(book3)

Abstract

S SIS

Reachable(book3)

Goal
OnTop(book2, shelf)
(em P£Y) Reachable(bookl) Reachable(bookl) Reachable(shelf) Reachable(shelf)
Reachable(book2) Holding(book2) Holding(book2) OnTop(book2, shelf)
Reachable(gamel) Reachable(gamel)

T e . e S . ————————————————————————————— o — o — o ———————————————. -

Bilevel Planning for Robots: An lllustrated Introduction. Kumar et al. Blog.

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Example: A*

A*

35 -

30 -

25 - O

20 -

15 S

10 -

F

— T T T T T T

0 10 20 30 40 20

|https://github.com/zhm-real/PathPlanning]
Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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https://github.com/zhm-real/PathPlanning

[earning-based: MuZero

1, Representation: learned state encoder
2, Transition Model: learned MLP

3, Planning algorithm: MCTS

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture

[Credit: MuZero, DeepMind]
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[Learning-based: LLM/VLM planning

1, Representation: language/vision tokenizer

2, Transition Model: learned Transformer

3, Planning algorithm: learned Transformer

Vaswani* et al. Attention is all you need. NIPS 2017.

Qutput
Probabilities

| Softmax |

1

| Linear

T A
| Add & Norm =~
Feed
Forward
Add &INorm J

Multi-Head
Attention

2 )

| Add &I Norm Je=

Mesked
Multi-Head
Attention

J

S

- —
Add & Norm |
Feed
Forward
N> Add & Norm
Multi-Head
Attention
Y
\_ Y,
Fositional
Encaoding e

Input
Embedding

I

Inputs

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture

Output
Embedding

I

Outputs
(shifted right)

Positional
Encoding
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2. Low-level / Continuous Space Planning

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture



Example: RRT (rapidly-exploring random trees)

RRT

35 1

25 A

20 T

15 -

10 -

0 10 20 30 40 50

|https://github.com/zhm-real/PathPlanning]
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https://github.com/zhm-real/PathPlanning

Example: MPC (Model Predictive Control)

Idea:

- Predict a few states into the

future

- Follow the actions from the

better path

Another name:
Receding horizon control

[https://www.do-mpc.com/]

T, e,
— ~ -
}3 2 N ~~~ ey
P ,A" -
§ o R N imee L .
.§ /, Ll T i disc
S J/ —_1
E / 12
© =4 //, —3
4’ |-"‘“"""—l {
=) Pt _MF::
Z 2 l —
P [ | o W
S . | |
o — b= = |
= : l
-6 b gl
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time [s]
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MPC — example task

Example Task:

Bring the oscillating masses to a rest

Objective / Cost / Reward:

Use less energy and reach a stable
state as soon as possible

[https://www.do-mpc.com/]
Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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MPC — predictive horizon

[https://www.do-mpc.com/]
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Bonus: Eclipse!

P
C
4 [:3
M,
—
‘O\
f[— —0— —0— — — ™ =
S, Sz
L— — M,
‘ L
E
U

©1994 Encyclopaedia Britannica, Inc.

Physicists extract useful state variables

Use physical equations to predict

©1994 Encyclopaedia Britannica, Inc.

Then calculate when we can reach a desired
state

https://www.britannica.com/science/eclipse/Prediction-and-calculation-of-solar-and-lunar-eclipses|
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https://www.britannica.com/science/eclipse/Prediction-and-calculation-of-solar-and-lunar-eclipses

[Learning-based: TD-MPC

1, Representation: learned state encoder

2, Transition Model: learned MLP

9+

3, Planning algorithm: MPPI (MPC) Observation Reward Value

Q
It is a continuous version of MuZero by ""@ @" Sl
using MPPI instead of MCTS. Action

N
Learned Model
Hansen et al. Temporal Difference ‘ \
Learning for Model Predictive Control. <

ICML 2022. Reward Env1ronment

TD-MPC

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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[Learning-based: Diffusion Planner

local receptive field

1, Representation: learned state encoder

2. Transition Model: learned diffusion model

«—— dcnoising

3, Planning algorithm: learned diffusion model

This is a fully end-to-end differentiable
architecture

Janner* et al. Planning with Diffusion for
Flexible Behavior Synthesis. ICML 2022.
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anning in Hybrid Space

Hey Spot! Put the
ball on the table.

| want to practice
sweeping the toys

- _‘
¥

Ly

X

-
: . S;

>

Place(®,8,0,) Pick(ess, 6,) Place(, @, 6,)

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture

Practicing Sweep (&, &, L,0,4)

62



Spot: play ball on table, tailure

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Spot: place ball on table, success

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture

64



Integrated Task and Motion Planning

Figure 1: The specified goal is for the contents of the blue cup to end up in the white bowl.
Because the green block obstructs reachable grasps for the blue cup, a TAMP algorithm
automatically plans to relocate the green block before picking up the blue cup and pouring
its contents into the white bowl. From left-to-right and top-to-bottom: the robot picking up
the green block, the robot placing the green block, the robot picking up the blue cup, and
the robot pouring the blue cup’s contents into the white bowl (8).

3. TASK AND MOTION PLANNING

To find solutions to TAMP problems, we need to integrate aspects of mation planing, multi-
modal motion planning, and task planning. In this section, we introduce a framework for
describing TAMP problems and algorithms that allows us to describe most of the broad range
of existing methods within a unified framework, and which we hope elucidates modeling and
algorithmic trade-offs among them. We begin by providing a formalism for describing ramp
problems, then characterize solution methods in terms of their strategies far sequencing
actions, for selecting their continuous parameters, and for integrating these methods.

3.1. TAMP problem description

Informally, TAMP problems use compact representational strategies from task planning to
describe and extend a class of MMMP problems. TAMP is an extension of MMMP in that there
tay be additional state variables thal are not geometric or kinemadtic, such as whether the
lizhts are on or the pizza is cooked. We begin by articulating a generic MMMP, using an
extension of a task-planning formulation, in Figure 6. There are two extensions of the task-
planning formalism visible here. First, there are continuous action parameters. Second, in
addition to preconditions and effects we have a new type of clause, called con for constraint.
It is a set of constraints that all must hold true among the continuous parameters of the
action in order for it to be a legal specification of a transition of the system.

moveWithin [i] (f,w, 7, w")
con: 7(0) =w, 7(1) =w', (V¢ €[0,1] Fs,(5(7(1)))
pre: mode =X.(f), conf=w
eff: conf + u’
switchModes [i,j] (w,6,0")
con: Fy,(ay)(w), Fx;ay)(w)
pre: mode — X.(0), conf —w
eff: mode « X;(0:)
Figure 6: A formalization of MMMP in the style of task planning. There is a moveWithin
action for each mode family ¥; and a switchMedes action for each mode family pair X, ;.

Garrett et al. Integrated Task and Motion Planning. Annual Review of Control, Robotics, and Autonomous Systems. 2021
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Why “integrated™

= » Premium

Q: Are the tools we’ve learned about in motion
planning sufficient, on their own, to enable the robot

to cook the pizza?

Why or why not?

P Pl o) 659711724 - Buildirg Blocks Y

Lecture 22: MIT 6.800/6.843 Robotics Manipulation (Fall 2021) | "Task and Motion Planning"

Lecture: Task and Motion Planning. Rachel Holladay, 2021.
Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Representative TAMP algorithms

Sequence Before Joint Satisfy

Search for Solve Plan Return
(Problem Next Plan Skeleton’s Plan )
Skeleton H-CSP 2

s ~
Individual Satisfy Before Sequence
Sample New Search for Ret
(Problem )-Fb Values from Plan Using » I:I ur:" )
Constraints Samples a

Figure 11: Flowcharts for two representative TAMP algorithms. 7op: an algorithm that
iteratively searches in the space of unbound plans and jointly satisfies the set of constraints
(Section 3.3.1). Bottom: an algorithm that iteratively performs individual sampling before
searching in the space of fully-bound plans (Section 3.3.2).

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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A table of TAMP approaches (by 2021

Pre-discretized

Sampling

Optimization

Satisfaction
First

Interleaved

Ferrer-Mestres™ (84, 85)

Dornhege™ (62, 63, 91)
Gaschler™ (92, 93, 94)
Colledanchise™ (95)

Siméon' (22)
Hauser! (13, 29, 14)
Garrett™ (86, 21)
Krontiris' (87, 88)
Akbari* (89)
Vega-Brown' (90)
Gravot™ (96, 97)
Stilman' (23, 98, 99)
Plaku® (100)
Kaelbling* (101, 102)
Barry' (103, 30, 104)
Garrett™ (70, 71)
Thomason™ (105)
Kim* (106, 107)
Kingston' (108)

IFernandez-Gonzalez™ (109)

Sequence
First

Nilsson* (2)

Erdem™ (74, 75)
Lagriffoul™ (65, 66, 67)
Pandey® (110, 111)
Lozano-Pérez® (112)
Dantam™ (77, 78, 79)
Lo* (113)

Wolfe* (114)
Srivastava® (76, 60)
Garrett® (55, 73)

Toussaint™ (61, 68, 69)
Shoukry™ (81, 82, 83)
Hadfield-Menell® (115)

Table 1: A table that catcgorizes MMMP and TAMP approaches, bascd on how they solve HC-
SPS and how they integrate with constraint satisfaction with action sequencing. Approaches

for MMMP are designated with T, and approaches for TAMP are designated with *. Each table

cell is listed chronologically.
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Using VLMs to Plan
@ o

Chain-of-Thought

My child wants to play with a Mgrvel a
model, please take one out for him. Task-Related Objects and Locations:
Current Observation - 1. Marvel Model (item to be retrieved) Robot Execution
Vision 2. Pepsi Can (blocking object)
3. Shelf (storage location)
, it Language
e ey
B ™8, & Model Task Plan
(GPT-4V) 3.Pickuppepsican
(VT 4. Place pepsi can on table
Finished Plan ——— 5. Pick up Marval model
1. Pick up paper cup 6. Place Marvel model on table
_
2. Place paper cup on table 7. Done

Add to Finished Plan

Hu et al. Look Before You Leap: Unveiling the Power of GPT-4V in Robotic Vision-Language
Planning. arXiv 2023.

*This paper has been using teleop for real-robot demo
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Outline

Basics of Planning

The Role of Learning in Planning

Planning Algorithms & Integration with Learning
Case Study: Mobile Manipulation

Takeaways
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Case Stuay:
Mopile Manipulation with Spot



SOt: From raw camera to motor actions

' 4

™

3

[Kumar*, Silver*, McClinton, Zhao, Proulx, Lozano-Perez,
Kaelbling, Barry. Under Review 2024] Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Challenges

Practicing Sweep (&, 5., .,0,,)

.' ”
g v 3
B~

Pick( @ 0,)

Dump (==, ¢,)

Place (@, 9,06, Pick(sss, €;)

Still far from general-purpose robots with long-horizon planning for mobile manipulation
- We don’t have a model or even data for training one on real robots!

- Partial observability, action execution noise, accurate skills...

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Overview: Bilevel Planning

Idea:

Build a high-level symbolic model

— Y

——

Classical Planner

Goal
o — T — OnTop(book2, shelf)
. . : Reachable(bookl) Reachable(bookl) Reachable(shelf) Reachable(shelf) \‘.
H O n d d es I g n S kl | | S/ O pe rGtO rS (emp.ty) Reachable(book2) Holding(book2) Holding(book2) OnTop(book2, shelf) ||
: Reachable(book3) Reachable(book3) Reachable(gamel) Reachable(gamel) :
Use Al planner to solve high-level Y FR— N I N Iy [P s |
p | G n n i n g p rO b I e m . '\\ Move(book2) Grasp(book2) Move(shelf) PlaceOntop(book2, shelf) H

Abstract

Move(book2, [0.5,0.1))

.

Then ground symbolic actions to
physical world

Figure 8: Animated visualization of constructing an abstract plan, and then ‘refining’ this plan using samplers (denoted by }) to
derive the continuous parameters for skill associated with an operator. These skills now have all their parameters specified, so can
be executed in the environment in sequence.
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Specitying Skill Operators

Arguments
List of typed variables
Preconditions

What must be true in order
to use this operator?

Add/Delete Effects

How Is the abstract state
changed by this operator?

|Credit: Tom Silver]

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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State

Arguments

Skill Policies

: def policyPickFromTable(state, ?b, ?

~ | Action o, P (srarer o
dx = (state[?b].x - state[?r].Xx)
dy = (state[?b].y - state[?r].y)

Same as
operator

dz = (state[?b].z - state[?r].z)
return [dx, dy, dz]

Simplified
example

The policy should achieve the operator effects

when the operator preconditions hold

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Perception / State Representation

"-—-—-—-—-—-—-—-—-—-—-—-—.\.

RGBD Prompts 4 Detic SAM N —— .
(On-Robot Cameras) (Manually-defined) ' (Zhou et al. 2022)  (Kirillov et al. 2023)" Object-Centric State
|

Front Left Fisheye

Ssh : id type X y z

scrubbing brush/

hammer/ ! ! brush movable 7.44 5.25 0.32
mop/ | |
giant white toothbrush - .
| |
small white ambulance | |
toy/ : : id type X z
car_(automobile) toy/ ' l yP y
599 ! : car toy movable 6.85 5.31 0.31
white plastic container with '
black handles/ |
white plastic tray with .
Left Fisheye black handles/ )
white plastic bowl/ id type X y z
white storage bin with
black handles bin container 6.52 5.40 0.33
small white ball/ I
ping-pong ball/ .
snowball/ |
Front Right Fisheye cotton ball/ | id type X y z
white button .
_ : ball toy movable 5.44 5.61 1.21
chair :
!
|
| id type X y z
! chair movable 5.39 4.98 0.55
|

[Kumar®, Silver*, McClinton, Zhao, Proulx, Lozano-Perez,
Kaelbling, Barry. Under Review 2024] Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture



Bilevel Planning demonstration

élassical Planner ;

S — OnTop(book2, shelf)

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Outline

Basics of Planning

The Role of Learning in Planning

Planning Algorithms & Integration with Learning
Case Study: Mobile Manipulation

Takeaways
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L

[akeaways

Long-horizon planning is a very challenging problem, particularly for planning on robots

It involves approximating complex functions: abstracting states and actions, modeling the
world, planning on high-dimensional space

Learning needs to be well integrated with planning, so the planning algorithms could scale
up to complicated, raw sensor-input, long-horizon tasks

Linfeng Zhao / Northeastern University / CS 5180 Guest Lecture
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Thank you!

Goals and Motivation

Basics of Planning

The Role of Learning in Planning

Planning Algorithms & Integration with Learning
Case Study: Mobile Manipulation

Takeaways
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» Lecture: Optimal Control and Planning & Model-based RL. Sergey Levine, 2017.

» A Theory of Abstraction in Reinforcement Learning. David Abel, PhD Thesis 2020.
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