

Toward Understanding Compositional Generalization in Object-Oriented World Modeling

Linfeng Zhao, Lingzhi Kong, Robin Walters, Lawson Wong Khoury College of Computer Sciences, Northeastern University

ICML 2022 Long Presentation

Motivation: Planning in robotic manipulation needs accurate transition model

Issue: Current models struggle in generalization when multiple objects recombine

Credit: Ravens

Motivation

Motivation: Compositional Generalization

How to learn a generalizable transition model when multiple objects recombine?

Train Learning a world model on some combinations

Generalization: Use the world model on novel combinations

Background: World Modeling

Goal: Learn a world model (transition model) $T: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$

3) Relative

- How to measure compositional generalization (in world modeling)?
- How to achieve guaranteed compositional generalization?
- How can its implementation be efficient?

Research Questions

- Motivation
- Setup: Object Library
- Defining Compositional Generalization
- Implementing Compositional Generalization
- Solving Binding Issue In End-to-end World Modeling for CG
- Results

Proposed Setup: Object Library

Motivation: sampling words from vocabulary to form sentences

Object Library L "Vocabulary" All possible objects

Scenes $\mathbb{O}_i \subset \mathbb{L}$ (Ordered) "Sentences" A combination of objects

Scene MDPs $\mathcal{M}_{\mathbb{O}_i}$

Generated by \mathbb{O} Moving objects on a table

Proposed Setup: Object Library

Object Library for CG

Training Train the world model on some scenes

Generalization Test the model on novel scenes

Learn a generalizable transition model $T: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$ \mathbf{C}

- Motivation lacksquare
- Setup: Object Library
- Defining Compositional Generalization
- Implementing Compositional Generalization
- Solving Binding Issue In End-to-end World Modeling for CG
- Results

Object-replacement: Formalism

Example: Replace Object Identity

How to quantitively define and measure compositional generalization?

Object-replacement Operation

Object-replacement operation:

Measure CG with Equivariance Error

We propose a setup Object Library to define compositional generalization, using permutation equivariance error w.r.t. objectreplacement operation.

Summary 1

- Motivation lacksquare
- Setup: Object Library
- Defining Compositional Generalization
- Implementing Compositional Generalization
- Solving Binding Issue In End-to-end World Modeling for CG
- Results

Recall: World Modeling

Learn a transition model $T: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$

[Kipf et al., ICLR 2020, Contrastive Learning of Structured World Models]

*s*₂

Formulation

(Permutation) Equivariance Error *EE* in Transition Modeling T

$$\operatorname{EE}(T_{\mathbb{L}}) \triangleq \mathbb{E}\left[\left| \hat{T}_{\mathbb{L}}(s' \mid s, a) - \hat{T}_{\mathbb{L}}(\sigma \, . \, s' \mid \sigma \, . \, s, \sigma \, . \, a \right. \right]$$

Expectation over:

All object replacements: $\sigma \in \Sigma_N$ All transitions $(s, a, s') \in \mathcal{S}_{\mathbb{I}} \times \mathcal{A}_{\mathbb{I}} \times \mathcal{S}_{\mathbb{I}}$

2. It cannot scale up well — $O(N^2)$ complexity (N = library size)

1. It can achieve perfect compositional generalization

More efficient solution?

19

*s*₂

Fact: Object Slots are Unordered

Objects and Slots do not have canonical order

Case 1	
)	
000	

Challenge: no canonical order of objects or slots

Input Recon Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

Step t

Step t+1

Motivating Visualization

We give the first solution (using *N*-slot GNN) and highlight the key obstacle in end-to-end compositional generalization: *lack of canonical ordering*.

- Motivation
- Setup: Object Library
- Defining Compositional Generalization
- Implementing Compositional Generalization
- Solving Binding Issue In End-to-end World Modeling for CG
- Results

Binding Issue in World Modeling

Binding Issue in World Modeling

How to relate slots and objects?

Slot MDP: Bind to Any Scene MDP

To solve the binding issue — Learn a canonical MDP model that can correctly bind to any scene (object combination)

Solving Binding Issue in Slot MDP

View: Multi-step World Model Inference

Solving Binding Issue in Slot MDP

Method: Action Attention & Aligned Loss

Expensive!

1. Object Extraction

2. Actions Concatenated to Objects

3. Σ_N -equivariant transition model

Ours achieves efficient compositional generalization end-to-end: Homomorphic Object-oriented World Model (HOWM)

Key Theorem: EE in Slot MDP

Theorem (informal): If actions correctly bind to object slots, the equivariance error is related by:

Intuition: Binding = slot MDP can correctly simulate any scene MDP

Corollary: CG in Slot MDP

Intuition: Learning perfectly in slot MDP = Compositional Generalization

We investigate the binding issue and highlight the two places it appear, propose a method to solve it, and provide theoretical guarantees.

- Motivation
- Setup: Object Library
- Defining Compositional Generalization
- Implementing Compositional Generalization
- Solving Binding Issue In End-to-end World Modeling for CG
- Results

Environment: Block Pushing with Object Library Random: locations, color, shapes K = 5

N = 5,10,20,30

Environment (Block Pushing)

- Exact CG: N-slot WM
- No CG: break each component
- Soft CG: soft K-slot WM, HOWM (ours)

Experimental Setup

1. Slot Extraction

2. Action Binding to Slots

3. Σ_{K} -equivariant latent transition model

Quantitative Results

5-step MRR (%) on Novel Test Scenes — Higher is better

Quantitative Results

Takeaways of HOWM It uses Action Attention with Aligned Loss to solve binding, so it can learn in the slot MDP for CG, and thus be more efficient

Binding Visualization

Input Recon Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

K=5 slots 5+1 rows (+ I background)

N=10 objects 10 columns

Found object identity through actions (unknown identity)

Talk Summary

- How we use "Object Library" to formulate compositional generalization
- How the formulation motivates our WM method and provides guarantees
- Understanding the central issue on end-to-end WM: binding problem
- Proposed Action Attention + Aligned Loss to solve CG in WM \bullet
- Representative results on our method, an oracle, and no-CG methods

Study compositional generalization in object-oriented world modeling

More Information

Check out our project website:

http://lfzhao.com/oowm/

Poster #412

zhao.linf@northeastern.edu