Integrating Symmetry Into Differentiable Planning With Steerable Convolutions Linfeng Zhao, Xupeng Zhu*, Lingzhi Kong*, Robin Walters, Lawson L.S. Wong Khoury College of Computer Sciences, Northeastern University

Symmetry can

 improve training and generalization of differentiable planning. We demonstrate on 2D path planning using Value Iteration Networks with rotation and reflection equivariance.1. Symmetry in Path Planning Problem

2. Visualization of Symmetry Transformations

3. Practice: Symmetric VIN using Steerable Convolution

High level idea: enforce equivariance constraints for each layer/step in planning (e.g. local value update), thus the entire planning procedure is globally equivariant.

We consider a specific type of differentiable planning algorithm, Value Iteration Network (VIN). Each row shows a VIN that iteratively approximates the fixed point We enforce equivariance constraints such that every two columns are equivariant: rotating the input guarantees the output is also rotated.

SymVIN (+rotation/reflection) brings significant boost over VIN in training speed and generalization, similar for SymGPPN (+ translation/rotation/reflection) vs. ConvGPPN (+translation) vs. GPPN, in all tasks. Figures show two tasks' training curves.
6. Visualization of Equivariance in Planners

Visually, we feed a map and its rotated version into VIN and SymVIN (+rotation/ reflection equivariance). SymVIN guarantees outputs on two maps are exactly same under rotation, which means the solution space is reduced.

