

Symmetry can improve training and generalization of differentiable planning. We demonstrate on 2D path planning using Value Iteration Networks with rotation and reflection equivariance.

Integrating Symmetry Into Differentiable Planning With Steerable Convolutions Linfeng Zhao, Xupeng Zhu*, Lingzhi Kong*, Robin Walters, Lawson L.S. Wong Khoury College of Computer Sciences, Northeastern University

1. Symmetry in Path Planning Problem

Path Planning

Each column is to compute the *shortest path / optimal actions* towards the red star goal location.

> $\circlearrowleft 90^{\circ} \circ (\operatorname{Plan}(M)) = \operatorname{Plan}(\circlearrowleft 90^{\circ} \circ M)$ Equivariance in Planning

Symmetry exists in path *planning task*: rotating input map produces rotated optimal path/actions. We use symmetry into differentiable planning algorithms by injecting correct equivariance constraints.

2. Visualization of Symmetry Transformations

3. Practice: Symmetric VIN using Steerable Convolution

— Local Equivariance

4. Insights and Theoretical Results

5. Experimental Setup and Selected Results

ConvGPPN (+translation) vs. **GPPN**, in all tasks. Figures show two tasks' training curves.

6. Visualization of Equivariance in Planners

