
Symmetry can 
improve training and 
generalization of 
differentiable planning. 
We demonstrate on 
2D path planning 
using Value Iteration 
Networks with 
rotation and reflection 
equivariance.
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1. Symmetry in Path Planning Problem

We use steerable convolutions to integrate symmetry in VINs.

↺ 90∘ ∘ VI(M) ≡ ↺ 90∘ ∘ 𝒯∞[V0] = 𝒯∞[ ↺ 90∘ ∘ V0] ≡ VI( ↺ 90∘ ∘ M)

Every update is equivariant 
— Local Equivariance

Entire planning is equivariant
— Global Equivariance

Q̄(k) = R̄a + Conv2D(V̄(k−1); WV
ā ) Q̄(k)

ā = R̄ā + SteerableConv(V̄; WV)

Replace

3. Practice: Symmetric VIN using Steerable Convolution

Each row is a VIN process. Two rows are related by a rotation .↺ 90∘

1: Represent (value) functions as “fields” 2: Value iteration as convolution (network)

Value Update

Theorem 2 (informal): Value iteration for path planning* is a 
form of steerable convolution network**

Theorem 1 (informal): Value iteration for path planning* is 
equivariant to translation, rotation, and reflection

4. Insights and Theoretical Results

2D Maze Navigation 2-DOF Manipulation

2D and Visual  
Maze Navigation

5. Experimental Setup and Selected Results

2-DOF Manipulation
In Workspace and C-space

Feed in  andM ↺ 90∘ ∘ M

VIN doesn’t satisfy equivariance SymVIN guarantees equivariance

6. Visualization of Equivariance in Planners

2. Visualization of Symmetry Transformations

We experiment on 2D path planning in 4 different navigation and manipulation tasks. 
We use given 2D grid map or learned map (visual navigation and workspace 
manipulation, using a mapper module).

The symmetry of a 2D grid 
includes 4 rotations times 2 
reflections, totally 8 
transformations. It is called 

 dihedral group.

With equivariance, 8 states 
related by symmetry are 
effectively “aggregated” into 
one state, hugely reduce state/
action space in planning.

D4

↺ 90∘ ∘ (Plan(M)) = Plan( ↺ 90∘ ∘ M)

Equivariance in Planning

Path Planning

Each column is to compute the 
shortest path / optimal actions towards 
the red star goal location.

Symmetry exists in path planning task:  
rotating input map produces rotated 
optimal path/actions.

We use symmetry into differentiable 
planning algorithms by injecting 
correct equivariance constraints.

We consider a specific type of differentiable planning algorithm, Value Iteration 
Network (VIN). Each row shows a VIN that iteratively approximates the fixed point.  
We enforce equivariance constraints such that every two columns are equivariant: 
rotating the input guarantees the output is also rotated. 

To enforce equivariance w.r.t. rotation and reflection for , we use steerable 
convolution layer by replacing regular Conv2D.

Vk ↦ Qk

Every pair is equivariant

High level idea: enforce equivariance constraints for each layer/step in planning (e.g. 
local value update), thus the entire planning procedure is globally equivariant.

The symmetry  comes from the underlying geometric space , as studied in 
Geometric Deep Learning. Value functions are fields/signals over it: . Thus, the 
equivariant transformations between such signals are equivariant (steerable) CNNs.

G Ω = ℤ2

ℤ2 → ℝ

SymVIN (+rotation/reflection) brings significant boost over VIN in training speed 
and generalization, similar for SymGPPN (+translation/rotation/reflection) vs. 
ConvGPPN (+translation) vs. GPPN, in all tasks. Figures show two tasks’ training curves.

Visually, we feed a map and its rotated version into VIN and SymVIN (+rotation/
reflection equivariance). SymVIN guarantees outputs on two maps are exactly same 
under rotation, which means the solution space is reduced.
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